• Title/Summary/Keyword: 도로기상정보

Search Result 117, Processing Time 0.028 seconds

A Study on the Application of Measures of Travel Time Variability by Analysis of Travel Time Distribution According to Weather Factor (기상요인에 따른 통행시간 분포 분석을 통한 통행시간 변동성 지표의 적정성 연구)

  • Kim, Jun-Won;Kim, Young-Chan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.1-13
    • /
    • 2015
  • Travellers consider extra travel time to be arriving their destination because of uncertainty of travel. So it is important to make predictable highway by providing information of travel time variability to traveller so as to enhance level of service at highway. In order to make predictable highway, it is necessary to develope measures of travel time variability that travellers can easily understand. Recently advanced country including the United States, travel time variability index are actively studied. In earlier study, 95percentile of travel time is considered to be most important calculation index of travel time variability. In this study, is has focused on the propriety analysis of 95percentile of travel time in domestic transportation environment. Result of analysis, All of measures(80percentile of travel time, 90percentile of travel time, 95percentile of travel time) show the tendency to increase when case of weather factor occur compare to normal condition under LOS A~D. Especially 95percentile of travel time increased sensitively.

The Analysis of Relationship between Forest Fire Distribution and Topographic, Geographic, and Climatic Factors (산불 발생 분포와 지형, 지리, 기상 인자간의 관계 분석)

  • Kwak, Han-Bin;Lee, Woo-Kyun;Lee, Si-Young;Won, Myoung-Soo;Lee, Myoung-Bo;Koo, Kyo-Sang
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.465-470
    • /
    • 2008
  • 우리나라는 산림은 단순림이 많고 밀도가 높기 때문에 산불이 한번 발생하면 대형 산불로 확산될 우려가 크다. 이 때문에 산불 발생을 미리 예측하여 대응할 필요가 있다. 산불 발생예측을 위해서는 산불 발생에 영향을 미치는 인자와 산불 발생의 관계를 파악하는 것이 중요하다. 본 연구는 1997년부터 2006년까지 발생한 전국에서 발생한 산불의 point data를 이용하였다. 산불 발생 지점의 지형인자와 지리인자, 그리고 산불 발생 당시의 기상인자로 DB를 구축하고 산불 발생과의 관계를 구명하였다. 지형인자 분석은 고도, 방위, 경사에 따른 산불 발생 빈도를 분석하였고, 그 상관관계를 분석하였다. 지리인자 분석에서는 인구밀도, 산불 발생지역의 접근성(도로에 따른 접근성, 대도시와의 거리에 따른 접근성)에 대한 산불 발생의 상관관계를 분석하였다. 기상인자와 산불 발생의 관계는 전국 76개소에서 관측된 온습도 데이터를 보간한 자료와 산불 발생과의 관계를 분석하였다. 기상인자 분석은 산불이 가장 빈번하게 발생하는 3월 하순, 4월 초순, 4월 중순 자료를 평균하여 산불 발생 빈도와의 상관관계를 분석하고 산불 발생 위험지역을 도출하였다. 본 연구를 통해서 각 인자와 산불 발생의 관계를 분석해보았다. 하지만 각 인자간의 관계를 분석하지 못한 것이 한계점이라고 할 수 있다. 차후 연구에서는 각 인자간의 관련성을 분석하고 산불 발생의 원인과 인자간의 구체적인 인과관계를 밝히는 것도 필요할 것으로 보인다.

  • PDF

A Study on the Relative Risk by Elderly Driver's Age using Logistic Regression (로지스틱 회귀분석을 이용한 고령운전자 연령대별 상대위험도 분석에 관한 연구)

  • Yoon, Byoung-Jo;Lee, So-Yeon;Yang, Sung-Ryong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.205-206
    • /
    • 2017
  • 도로교통공단 교통사고 분석시스템(TAAS)에 따르면 2016년 기준 전체사고의 약 11%가 고령운전자 사고이며, 고령운전자 사고로 인한 사망자수는 759명에 달한다. 본 연구에서는 고령운전자의 신체적 특징을 감안하여 전기(65세~74세), 중기(75세~84세), 후기(85세 이후)로 나누고 로지스틱 회귀분석을 이용하여 고령운전자의 연령대별 사고특성과 사망사고에 영향을 미치는 요인을 파악하고 그 특성을 고려한 안전대책을 제시하고자 하였다. 분석결과 차량단독사고일 때 고령자 전 연령대에서 사고위험도가 높게 나타났으며, 도로이탈로 인한 사고인 경우 다른 사고요인에 비해 위험도가 높게 나타났다. 사고원인별로 살펴보면 안전운전의무 불이행, 중앙선침범으로 인한 사고인 경우가 높았으며, 기상상태별로 볼 때 전기고령자에서 중기, 후기 고령자로 갈수록 흐릴 때의 사고위험도가 높아지는 것으로 나타났다.

  • PDF

Characteristics of Road Weather Elements and Surface Information Change under the Influence of Synoptic High-Pressure Patterns in Winter (겨울철 고기압 영향에서 도로 위 기상요소와 노면정보 변화 특성에 관한 연구)

  • Kim, Baek-Jo;Nam, Hyounggu;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Jiwan;Lee, Yong Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.329-339
    • /
    • 2022
  • Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.

A Study on the Characteristics of the Atmospheric Environment in Suwon Based on GIS Data and Measured Meteorological Data and Fine Particle Concentrations (GIS 자료와 지상측정 기상·미세먼지 자료에 기반한 수원시 지역의 도시대기환경 특성 연구)

  • Wang, Jang-Woon;Han, Sang-Cheol;Mun, Da-Som;Yang, Minjune;Choi, Seok-Hwan;Kang, Eunha;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1849-1858
    • /
    • 2021
  • We analyzed the monthly and annual trends of the meteorological factors(wind speeds and directions and air temperatures) measured at an automated synoptic observation system (ASOS) and fine particle (PM10 and PM2.5) concentrations measured at the air quality monitoring systems(AQMSs) in Suwon. In addition, we investigated how the fine particle concentrations were related to the meteorological factors as well as urban morphological parameters (fractions of building volume and road area). We calculated the total volume of buildings and the total area of the roads in the area of 2 km × 2 km centered at each AQMS using the geographic information system and environmental geographic information system. The analysis of the meteorological factors showed that the dominant wind directions at the ASOS were westerly and northwesterly and that the average wind speed was strong in Spring. The measured fine particle concentrations were low in Summer and early Autumn (July to September) and high in Spring and Winter. In 2020, the annual mean fine particle concentration was lowest at most AQMSs. The fine particle concentrations were negatively and weakly correlated with the measured wind speeds and air temperatures (the correlation between PM2.5 concentrations and air temperatures was relatively strong). In Suwon city, at least for 6 AQMSs except for the RAQMS 131116 and AQMS 131118, the PM10 concentrations were affected mainly by the transport from outside rather than primary emission from mobile sources or wind speed decrease caused by buildings and, in the case of PM2.5, vise versa.

A Study on Relationships between Travel Time and Provision of Road Inundation Information in Heavy Rain and Snow using an Agent-based Simulation Model (폭우.폭설 시 침수 정보 전달과 통행시간 관계 연구 -에이전트 기반 모델을 활용하여-)

  • Na, Yu-Gyung;Lee, Seungho;Joh, Chang-Hyeon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.262-274
    • /
    • 2013
  • Heavy rain and heavy snow as representative extreme weather are recently an issue in urban area. The paper aims at modeling the scenarios of evacuation that minimizes economic loss of the designated urban area with improving travel efficiency by providing road closure information facing an extremely heavy rainfall. The paper develops a model by using a NetLogo toolkit applied to the study area of Seocho-dong, Seocho-gu, Seoul. The model conducts a simulation of travel time under different scenarios of information provision. The simulation results show that it is efficient to provide the information of road closure to 20~40% of the drivers under the scenario of humid road or rainfall less than 20mm, whereas to 40~60% of the drivers under the scenario of heavy rainfall more than 20mm.

  • PDF

Road Detection in the Spaceborne Synthetic Aperture Radar Images (위성 탑재 합성개구 레이더 영상에서의 도로 검출)

  • Chun, Sung-Min;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.123-132
    • /
    • 1998
  • This paper presents a road detection technique for spaceborne synthetic aperture radar (SAR) images. Roads are important cartographic features. We incorporate an active contour model called snake as a model for the road and define a new external energy for snake which is appropriate for the road. Detecting roads in spaceborne SAR images is very difficult without other information. In this paper, digital maps are utilized to obtain the initial position and shape for snake. Only approximate geodetic location of roads appearing in SAR images can be known through geocoding process and usual digital maps also have location errors. Therefore, there exist large location offsets between the two data. By introducing initial matching procedure, the errors are reduced significantly. Then we initialize the snake's shape using the roads extracted from digital map and minimize the energies of all snake points to detect roads. We outline two problems in detection and propose a method that mitigates them.

  • PDF

AutoML and CNN-based Soft-voting Ensemble Classification Model For Road Traffic Emerging Risk Detection (도로교통 이머징 리스크 탐지를 위한 AutoML과 CNN 기반 소프트 보팅 앙상블 분류 모델)

  • Jeon, Byeong-Uk;Kang, Ji-Soo;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.14-20
    • /
    • 2021
  • Most accidents caused by road icing in winter lead to major accidents. Because it is difficult for the driver to detect the road icing in advance. In this work, we study how to accurately detect road traffic emerging risk using AutoML and CNN's ensemble model that use both structured and unstructured data. We train CNN-based road traffic emerging risk classification model using images that are unstructured data and AutoML-based road traffic emerging risk classification model using weather data that is structured data, respectively. After that the ensemble model is designed to complement the CNN-based classification model by inputting probability values derived from of each models. Through this, improves road traffic emerging risk classification performance and alerts drivers more accurately and quickly to enable safe driving.

The Driving Situation Judgment System(DSJS) using road roughness and vehicle passenger conditions (도로 거칠기와 차량의 승객 상태를 활용한 DSJS(Driving Situation Judgment System) 설계)

  • Son, Su-Rak;Jeong, Yi-Na;Ahn, Heui-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.223-230
    • /
    • 2021
  • Currently, self-driving vehicles are on the verge of commercialization after testing. However, even though autonomous vehicles have not been fully commercialized, 81 accidents have occurred, and the driving method of vehicles to avoid accidents relies heavily on LiDAR. In order for the currently commercialized 3-level autonomous vehicle to develop into a 4-level autonomous vehicle, more information must be collected than previously collected information. Therefore, this paper proposes a Driving Situation Judgment System (DSJS) that accurately calculates the crisis situation the vehicle is in by useing the roughness of the road and the state of the passengers of surrounding vehicles including road information and weather information collected from existing autonomous vehicles. As a result of DSJS's PDM experiment, PDM was able to classify passengers 15.52% more accurately on average than the existing vehicle's passenger recognition system. This study can be a basic research to achieve the 4th level autonomous vehicle by collecting more various types than the data collected by the existing 3rd level autonomous vehicle.

TSSN: A Deep Learning Architecture for Rainfall Depth Recognition from Surveillance Videos (TSSN: 감시 영상의 강우량 인식을 위한 심층 신경망 구조)

  • Li, Zhun;Hyeon, Jonghwan;Choi, Ho-Jin
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.87-97
    • /
    • 2018
  • Rainfall depth is an important meteorological information. Generally, high spatial resolution rainfall data such as road-level rainfall data are more beneficial. However, it is expensive to set up sufficient Automatic Weather Systems to get the road-level rainfall data. In this paper, we proposed to use deep learning to recognize rainfall depth from road surveillance videos. To achieve this goal, we collected two new video datasets, and proposed a new deep learning architecture named Temporal and Spatial Segment Networks (TSSN) for rainfall depth recognition. Under TSSN, the experimental results show that the combination of the video frame and the differential frame is a superior solution for the rainfall depth recognition. Also, the proposed TSSN architecture outperforms other architectures implemented in this paper.