• Title/Summary/Keyword: 도로구조 안정성

Search Result 135, Processing Time 0.022 seconds

Evaluation Model for Lateral Flow on Soft Ground Using Commitee and Probabilistic Neural Network Theory (군집신경망과 확률신경망 이론을 이용한 연약지반의 측방유동 평가 모델)

  • Kim, Young-Sang;Joo, No-Ah;Lee, Jeong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.65-76
    • /
    • 2007
  • Recently, there have been many construction projects on soft ground with growth of industry and various construction problems concerning soft soil behavior also have been reported. Especially, foundation piles of abutments and (or) buildings which were constructed on the soft ground have been suffering from a lot of stability problems of inordinary displacement due to lateral flow of soft ground. Although many researches for this phenomena have been carried out, it is still difficult to assess the mechanism of lateral flow on soft ground quantitatively. And reliable design method for judgement of lateral flow occurrence is not established yet. In this study, PNN (probabilistic neural network) and CNN (committee neural network) theories were applied for judgment of lateral flow occurrence based on eat data compiled from Korea and Japan. Predictions of PNN and CNN models for new data which were not used during model development are compared with those predicted by conventional empirical methods. It was found that the developed PNN and CNN models can predict more precise and reliable judgment of lateral flow occurrence than conventional empirical methods.

Distributional Characteristics and Evaluation of the Population Sustainability, Factors Related to Vulnerability for a Polygonatum stenophyllum Maxim. (층층둥굴레(Polygonatum stenophyllum Maxim.)의 분포특성과 개체군의 위협요인 및 지속가능성 평가)

  • Kim, Young-Chul;Chae, Hyun-Hee;Ahn, Won-Gyeong;Lee, Kyu-Song;Nam, Gi-Heum;Kwak, Myoung-Hai
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.303-320
    • /
    • 2019
  • Plants interact with various biotic and abiotic environmental factors. It requires much information to understand the traits of a plant species. A shortage of information would restrict the assessment, especially in the evaluation of what kind of factors influence a plant species to face extinction. Polygonatum stenophyllum Maxim. is one of the northern plants of which Korea is the southern distribution edge. The Korean Ministry of Environment had designated it to be the endangered species until December 2015. Although it is comparatively widespread, and a large population has recently been reported, it is assessed to be vulnerable due to the low population genetic diversity. This study evaluated the current distribution of Polygonatum stenophyllum Maxim. We investigated the vegetational environment, population structures, phenology, soil environment, and self-incompatibility based on the results. Lastly, we evaluated the current threats observed in the habitats. The habitats tended to be located in the areas where the masses at the edge of the stream accumulated except for those that were located on slopes of some mountainous areas. Most of them showed a stable population structure and had re-established or recruited seedlings. Polygonatum stenophyllum Maxim. had the difference in time when the shoots appeared above the ground depending on the depth of the rhizome located in the underground. In particular, the seedlings and juveniles had their rhizome located shallow in the soil. Visits by pollinator insects and success in pollination were crucial factors for bearing of fruits by Polygonatum stenophyllum Maxim. The threats observed in the habitat of Polygonatum stenophyllum Maxim. included the expansion of cultivated land, construction of new buildings, and construction of river banks and roads. Despite such observed risk factors, it is not likely that there would be rapid population reduction or extinction because of its widespread distribution with the total population of more than 2.7 million individuals and the new populations established by the re-colonization.

Changes of Major Quality Characters during Grain Filling in Waxy Corn and Super Sweet Corn (숙기에 따른 찰옥수수 및 초당옥수수의 주요 품질특성 변화)

  • 김선림;박승의;차선우;서종호;정태욱
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.73-78
    • /
    • 1994
  • This experiment was carried out to investigate the major characteristics associated with the flavor rate and their changes according to days after silking of super sweet corn(Cocktail 86) for vegetable and waxy corn(Chalok 1). Ear elongation finished around 22∼24 days after silking. In kernel development, elongation was much more prominant in super sweet corn than that in waxy corn but thickness was vice versa. Pericarp thickness and kernel hardness of super sweet corn were slightly increased but those of waxy corn were increased rapidly as the ears matured. Moisture and sucrose content of super sweet corn remained high but the waxy corn was not. The reducing sugars(glucose, fructose) were relatively high at the early maturity stage but they were decreased as the ears matured and negatively correlated with sucrose and flavor rate. Soluble solids (Brix %) were positively correlated with sucrose and total sugar(sucrose+ glucose+fructose) content in waxy corn but not in super sweet corn and was considered as inappropriate criate criterion to envaluate the sugar content and flavor rate. Pericarp thickness and sucrose content were positively correlated with the flavor rate in both hybrids but total sugar content, and kernel hardness were positively correlated with flavor rate in super sweet corn and waxy corn respectively.

  • PDF

High-Temperature Cesium (Cs) Retention Ability of Cs-Exchanged Birnessite (세슘(Cs)으로 이온 교환된 버네사이트의 고온에서의 Cs 고정 능력)

  • Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.313-321
    • /
    • 2023
  • Numerous studies have investigated the adsorptive sequestration of radioactive cesium in the natural environment. Among these studies, adsorption onto minerals and high-temperature treatment stand out as highly effective, as demonstrated by the use of zeolite. In this study, cesium was ion-exchanged with birnessite and subsequently underwent high-temperature treatment up to 1100℃ to investigate both mineral phase transformation and the leaching characteristics of cesium. Birnessite has a layered structure consisting of MnO6 octahedrons that share edges, demonstrating excellent cation adsorption capacity. The high-temperature treatment of cesium-ion-exchanged birnessite resulted in changes in the mineral phase, progressing from cryptomelane, bixbyite, birnessite to hausmannite as the temperature increased. This differs from the phase transformation observed in the tunneled manganese oxide mineral todorokite ion-exchanged with cesium, which shows phase transformation only to birnessite and hausmannite. The leaching of cesium from cesium-ion-exchanged birnessite was estimated by varying the reaction time using both distilled water and a 1 M NaCl solution. The leaching quantity changed according to the treatment temperature, reaction time, and type of reaction solution. Specifically, the cesium leaching was higher in the sample reacted with 1 M NaCl compared to the sample with distilled water and also increased with longer reaction time. For the samples reacted with distilled water, the cesium leaching initially increased and then decreased, while in the NaCl solution, the leaching decreased, increased again, and finally nearly stopped like the sample in the distilled water for the sample treated at 1100℃. These changes in leaching are closely associated with the mineral phases formed at different temperatures. The phase transformation to cryptomelane and birnessite enhanced cesium leaching, whereas bixbyite and hausmannite hindered leaching. Notably, hausmannite, the most stable phase occurring at the highest temperature, demonstrated the greatest ability to inhibit cesium leaching. This results strongly suggest that high-temperature treatment of cesium-ion-exchanged birnessite effectively immobilizes and sequesters cesium.

Soil Physical and Chemical Properties of Kaolinite Opencast Mines and Adjacent Red Pine Forests in Sancheong-gun (산청군 고령토(백토) 노천 광산 채굴지와 인접 소나무 임분의 토양 물리·화학적 성질)

  • Kim, Kyung Tae;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.382-389
    • /
    • 2020
  • Soil properties in opencast mines are a key factor in reclamation (revegetation) of mining areas. In this study we determined the soil physical and chemical properties of kaolinite tailings, reclaimed areas, and adjacent natural red pine (Pinus densiflora S. et Z.) forests in kaolinite opencast mines in Sancheong-gun, Gyeongsangnam-do. Six sites were chosen for collection of soil samples to determine soil physical and chemical properties at a soil depth of 10 cm. Soil bulk density was significantly higher (P < 0.05) in the kaolinite tailings (1.51 g·cm-3) than in the reclaimed areas (1.19 g·cm-3) and red pine forests (0.93 g·cm-3), whereas air phase in the kaolinite tailings (14.2%) was significantly lower than in the red pine forests (32.6%). Clay content in the red pine forests was significantly higher than in the reclaimed areas (18.7%) or kaolinite tailings (14.8%), whereas soil structural stability index was significantly lower in the reclaimed areas (1.61%) and kaolinite tailings (0.87%) than in the red pine forests (7.75%). Soil pH was significantly higher in the kaolinite tailings (pH 6.68) and reclaimed areas (pH 6.27) than in the red pine forests (pH 5.31). Soil organic carbon and total nitrogen were significantly higher in the red pine forests (C: 36.03 mg·g-1; N: 2.08 mg·g-1) than in the reclaimed areas (C: 5.00 mg·g-1; N: 0.31 mg·g-1) than in the kaolinite tailings (C: 2.12 mg·g-1; N: 0.07 mg g-1). The amount of available phosphorus was not significantly different among the three treatments. The concentration of exchangeable potassium was significantly lower in the kaolinite tailings (0.08 cmolc·kg-1) than in the reclaimed areas (0.21 cmolc·kg-1) and red pine forests (0.30 cmolc·kg-1). These results indicate that, because of high soil bulk density and low soil organic carbon, total nitrogen, available phosphorus, and exchangeable potassium in kaolinite tailings and reclaimed mining areas, soil nutrient management is needed in order to reclaim the vegetation in these type of areas.