• Title/Summary/Keyword: 도넛,

Search Result 62, Processing Time 0.022 seconds

Impact of Tofu Paste and Non-starch Polysaccharides on Oil Uptake Reduction in Cake Doughnuts (케이크 도넛의 흡유저감에 대한 두부 페이스트와 비전분성 탄수화물 고분자의 영향)

  • Jung, Gil-Young;Lee, Hyeon-Jeong;Ko, Eun-Sol;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.72-78
    • /
    • 2017
  • The objective of this study was to investigate the effects of combinations of tofu paste and non-starch polysaccharides (NSP) on the oil uptake reduction (OTR) of deep-fat fried cake doughnuts. OTR agents were tofu paste (from grinding tofu with deionized water, followed by passage through a 60 mesh sieve), and five neutral and nine anionic NSPs. A control doughnut (without tofu paste or NSP), tofu doughnut (with tofu paste) and NSP-tofu doughnut (with tofu paste and NSP) were prepared. The moisture and total lipid (TL) content, cross-section image, color characteristic, and specific volume were measured. The tofu and NSP-tofu doughnuts exhibited higher moisture and lower TL content than the control. OTR was 10.8% for the tofu doughnut, and between 13.2% and 41.2% for the NSP-tofu doughnut. The highest OTR (41.2%) was found in the NSP-tofu doughnut with a combination of tofu paste and sodium alginate (NaA). The specific volume of the NSP-tofu doughnuts with combinations of tofu paste with NaA (2.5 mL/g), locust bean gum (2.5 mL/g), and ${\kappa}$-carrageenan (2.4 mL/g) was very close to that of the control (2.6 mL/g). Considering the OTR and specific volume of doughnuts, the combination of tofu paste and NaA would be most effective in reducing the oil uptake of doughnuts during deep-fat frying.

An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab (도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구)

  • Chung, Joo-Hong;Kang, Sung-Hoon;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study investigated the bond characteristics of embedded deformed steel bar in donut type biaxial hollow slabs. The donut type hollow sphere make concrete inner cover formed between steel bar and hollow sphere due to the hollow shape and arrangement. Generally, inner cover was thinner than outer cover, and some part of donut type biaxial hollow slab has smaller inner cover thickness than $2.5d_b$. It was affected to the bond condition of deformed bar. Furthermore, inner cover thickness changes along the longitudinal deformed bar due to hollow shape. Therefore, donut type hollow slab was divided 3 regions according to the hollow shape such as insufficient region, transition region, sufficient region. Pull-out test were performed to find out the effect of bond condition by the region. Main parameters are inner cover thickness, embedded length and bond location. Bond characteristics of donut type biaxial hollow slab were confirmed through comparison of bond stress-slip relationship, maximum bond strength and bond stress distribution of each regions. And the calculation method of bond strength of donut type biaxial hollow slab was suggested based on the test results.

One-Way Shear Strength of Donut Type Biaxial Hollow Slab Considered Hollow Shapes and Materials (중공형상 및 재료의 영향을 고려한 도넛형 이방향 중공슬래브의 일방향 전단강도)

  • Chung, Joo-Hong;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2012
  • This paper presents the shear capacities of biaxial hollow slab with donut type hollow sphere. Recently, various types of slab systems which can reduce self-weight of slabs have been studied for increasing constructions of taller and larger building structures. A biaxial hollow slab system is widely known as one of the effective slab system, which can reduce self-weight of slab. According to previous studies, the hollow slab has low shear strength, compared to solid slab. Also, the shear capacities of biaxial hollow slab are influenced by the shapes and materials of hollow spheres. However, the current code does not provide a clear computation method for the shear strength of hollow slab. To verify the shear capacities of this hollow slab, one-way shear tests were performed. Four test specimens were used for test parameters. One was conventional RC slab and others were hollow slabs. The test parameters included two different shapes and materials of plastic balls. The shape parameters were donut and non-donut forms and the material parameters were general plastic and glass fiber plastic. The results showed that the shear strengths varied depending on hollow shapes and materials used in the slab.

잡곡 도넛

  • Korean Bakers Association
    • 베이커리
    • /
    • no.12 s.377
    • /
    • pp.106-107
    • /
    • 1999
  • PDF