• Title/Summary/Keyword: 덴드리틱

Search Result 7, Processing Time 0.028 seconds

Facile Synthesis of Dendritic Benzyl Chlorides from Their Alcohols with Methanesulfonyl Chloride/$Et_3N$ (덴드리틱 벤질 클로라이드의 효율적인 합성)

  • Lee, Jae-Wook;Han, Seung-Choul;Kim, Hee-Joo;Kim, Jung-Hwan;Lee, Un-Yup;Kim, Byoung-Ki;Sung, Sae-Reum;Kang, Hwa-Shin;Kim, Ji-Hyeon;Huh, Do-Sung
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.417-421
    • /
    • 2007
  • A successful rapid synthesis of dendritic benzyl chlorides from dendritic benzyl alcohols using methanesulfonyl chloride/$Et_3N$ as activating agents was described. In this method, each dendritic benzyl chloride can be prepared in one pot: no isolation of intermediate mesylated dendrons is required. The key steps in the syntheses of dendritic benzyl chlorides were the mesylation of the hydroxymethyl group followed by the chlorination by in-situ generated triethylammonium chloride.

Synthesis of Dendritic Polystyrene-block-Linear Poly(t-butyl acrylate) Copolymers by an Amide Coupling (아미드 커플링을 통한 덴드리틱 Polystyrene-Block-Linear Poly(t-butyl acrylate) 공중합체의 합성)

  • Song, Jie;Cho, Byoung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.158-163
    • /
    • 2009
  • In this study, we synthesized a series of dendritic polystyrene-b-linear poly (t-butyl acrylate) copolymers with well-defined molecular architectures. The hydroxyl group located at the focal point of the second generation dendron bearing polystyrene ($M_n$ = 1000 g/mol) peripheries was converted into amine group via the following stepwise reactions: 1) tosylatoin, 2) azidation, and 3) reduction. On the other hand, the linear poly (t-butyl acrylate)s were prepared by an atom transfer radical polymerization (ATRP) of t-butyl acrylate where benzyl 2-bromopropanoate and Cu(I)Br/PMDETA were used as initiator and catalyst, respectively. To convert the end group of prepared poly (t-butyl acrylate) s into carboxylic acid, a debenzylation was performed using Pd/C catalyst under $H_2$ atmosphere. In the final step, dendritic-linear block copolymers were obtained through a simple amide coupling reaction mediated by 4-(dimethylamino) pyridine(DMAP) and N,N'-diisopropylcarbodiimide(DIPC). The resulting diblock copolymers were shown to have well-defined molecular weights and narrow molecular weight distributions as supported by $^1H$-NMR spectroscopy and gel permeation chromatography(GPC).

Study on the Origin of Rapakivi Texture in Bangeojin Granite (방어진 화강암에 나타나는 라파키비 조직의 성인에 관한 연구)

  • 진미정;김종선;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.30-48
    • /
    • 2002
  • Phenocrysts with rapakivi texture are easily observed in Bangeojin granite. The rapakivi texture is composed of inner pinkish alkali feldspars and white-colored mantling plagioclase. The Bangeojin granite distinctively includes lots of mafic microgranular enclaves and can be divided into five rock facies: (1) enclave-poor granite (EPG); (2) enclave-rich granite (ERG); (3) mafic microgranular enclave (MME); (4) hybrid zone between mafic microgranular enclave and granite (HZ); (5) hybrid zone-like enclaves (HLE). The rapakivi textures are observed in these five rock facies with no difference in shape and size. Plagioclase mantle commonly shows dendritic texture that is an important indicator to know the rapakivi genesis. The mantling texture would indicate supercooling condition during magma solidification process. In addition, mafic microgranular enclaves would imply the magma mingling environment. The magma mixing process had possibly caused the mantling texture. An abundance of rapakivi phenocrysts in HZ and the influxing phenomenon of the phenocrysts into MME support that there were physical chemical exchanges during the mingling. And this model of the magma mixing/mingling explain well the heterogeneous distribution of the rapakivi phenocrysts in the five rock facies. Therefore the rapakivi textures in the Bangeojin granite would have been formed by magma mixing process.

Electrical Properties of LB Films Using Dendritic Macromolecules Containing Pyridinealdoxime Functional Group (Pyridinealdoxime 기능기 그룹을 가진 덴드리틱 거대분자를 이용한 LB막의 전기적 특성)

  • 정상범;유승엽;박은미;김정균;박재철;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.761-763
    • /
    • 2001
  • Dendrimers represent a new class of synthetic macromolecules characterized by a regularly branched treelike structure. Dendrimer can be made with high regularity and controlled molecular weight. Peculiar features of the dendritic geometry are the large number of end groups as well as the shape persistence in higher generations, approaching spherical geometry. One of the most peculiar characteristics of dendritic macromolecules is their controlled molecular structure and orientation, which means that they have a practical application in achieving a highly organized molecular arrangement. We attempted to fabricate a G4-48PyA dendrimer LB films containing 48 pyridinealdoxime functional end group that could form a complex structure with metal ions. Also, we investigated the surface activity of dendrimer films at air-water interface. And we have studied the electrical properties of the ultra-thin dendrimer LB films. The electrical properties of the ultra-thin dendrimer LB films were investigated by studying the current-voltage(I-V) characteristics of metal/dendrimer LB films/metal (MIM) structure. And rectifying behavior of the devices was occurred in applied field.

  • PDF

Electrical Properties by Effect of Metal Complex of G4-48PyP Dendritic Macromolcules Thin Films (G4-48PyP 덴드리틱 거대분자 박막의 금속이온 착체에 의한 전기적 특성)

  • Son, J.H.;Jung, S.B.;Kim, B.S.;Park, T.C.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.16-18
    • /
    • 2002
  • We attempted to fabricate a dendrimer Langmuir-Blodgett(LB) films containing 48 pyridinepropanol functional end group. As the pyridinepropanol functional group could form a complex structure with metal ions. In this study the samples for electrical measurement were fabricated to two types metal complexes with $Pt^{4+}$ and $Fe^{2+}$ ions by LB method. And we have investigated the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure G4-48PyP dendrimer and its complex with metal ions($Pt^{4+}$ and $Fe^{2+}$ ions). In the surface pressure-area($\pi-A$) isotherms of the dendrimers, the stable condensed films formed at the air-water interface and the metal ions effect showed the difference on molecular behavior. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of metal/dendrimer LB films/metal(MIM) structure. In conclusion, it is demonstrated that the metal ion around G4-48PyP dendrimer can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties.

  • PDF