• Title/Summary/Keyword: 데토네이션 안정성

Search Result 2, Processing Time 0.014 seconds

Numerical Analysis of Detonation Wave Propagation Characteristics in Annular Channels (환형 관내의 데토네이션 파 전파 특성 해석)

  • Lee, Su-Han;Cho, Deok-Rae;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.66-73
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channels. Numerical approaches used in the previous studies were extended with marching windows technique. Parametric study has been carried out using a radius of curvature normalized by the channel width considered as unique geometric parameter. In the channels of small radius of curvature, detonation wave is unstable and the regular cell structure is not observed. There is a critical radius of curvature where cell structure can be sustained. The effect of curvature makes the pressure difference on inner and outer surfaces where the detonation wave is overdriven. The results converge to that of straight channel as the radius of curvature gets larger, as expected.

Reviewing of Operating Stability about Pulse Detonation Engine's Ignition Circuit to the Type of Power Sources (점화 신호 종류에 따른 PDE 점화회로의 작동 안정성 연구)

  • Kim, Jungmin;Han, Hyung-Seok;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.11-18
    • /
    • 2018
  • A pulse detonation engine (PDE) requires high operating frequency greater than 100 Hz to get meaning thrust as a propulsion devise. Thus a PDE needs an ignition circuit operating precisely at high operating frequencies. In this paper AC(alternating current) and DC(direct current) types of ignition circuits were designed and compared. Each circuit was tested at operating frequencies from 16.66 to 100.00 Hz by measuring the input signal of each circuit and the voltage change in the primary coil of the transformer. Results show that the DC power circuit can attain a maximum error rate of 5.15% at higher operating frequencies, whereas the AC power circuit displays a negligible agreement with the operating signal at frequencies greater than 33.33 Hz. Therefore it is confirmed that DC-powered ignition circuit is preferable for the PDE operating at high frequencies.