Until now, Korean shipyards have accumulated a great amount of data. But they do not have appropriate tools to utilize the data in practical works. Engineering data contains experts' experience and know-how in its own. It is very useful to extract knowledge or information from the accumulated existing data by using data mining technique This paper treats an evolutionary computation based on genetic programming (GP), which can be one of the components to realize data mining. The paper deals with linear models of GP for the regression or approximation problem when given learning samples are not sufficient. The linear model, which is a function of unknown parameters, is built through extracting all possible base functions from the standard GP tree by utilizing the symbolic processing algorithm. In addition to a standard linear model consisting of mathematic functions, one variant form of a linear model, which can be built using low order Taylor series and can be converted into the standard form of a polynomial, is considered in this paper. The suggested model can be utilized as a designing tool to predict design parameters with small accumulated data.
엔진 제작사의 엔진 시뮬레이션 상세한 정보는 일반적으로 공개되지 않으며 운용자는 엔진제어를 위해 단지 몇몇 파라미터만을 사용할 수 있다. 따라서, 엔진 성능모델을 생성하기 위해서는 제한된 가용 자료를 기초로 할 수 밖에 없다. 본 논문에서는 초음속 항공기용 저바이패스 터보팬엔진 성능 모델링에 관해 기술하였다. 대상 엔진은 Pratt and Whitney F100-PW-229 터보팬 엔진을 적용하였다. F100-PW-229 터보팬 엔진성능 모델을 구축하기 위하여 일반적인 공개된 자료와 문헌 정보를 기초로 하여 설계변수들에 대한 민감도 해석 및 Adaptive Random Search method를 이용한 파라미터 최적화 과정을 통하여 미지의 구성품 특성값들을 예측 적용하였다. 엔진덱 데이터와 구축된 엔진성능 모델의 해석 결과 비교를 통하여 엔진성능 모델이 적합하게 구성되었음을 확인하였다.
최근 다수의 유도무기는 공간 효율성을 위해 접힘 날개를 적용하고 있다. 날개의 전개과정 중에 작용하는 공기력은 날개 전개 성능에 많은 영향을 주기 때문에, 일반적으로 CFD 해석을 통하여 공력계수를 산출한다. 이와 다른 방법으로 Missile Datcom을 이용하여, 날개의 전개 과정을 날개 상반각 변화로 가정하여 입력하면, 빠르고 간편하게 CFD 해석 결과와 근접한 공력계수 산출이 가능하다. 또한 동체에 돌출부가 존재하는 경우 날개를 서로 포개어 접어야 되는 상황이 발생할 수 있고, 전개과정 중에 한쪽 날개가 다른 쪽 날개의 전개 과정을 방해 또는 도와주게 되는 구속효과가 발생하게 된다. 따라서 공기력 효과 및 구속 효과를 고려하여 날개의 초기구속 여부 판단 기준과 전개 거동 특성을 수식화 하였고, 날개 전개 성능 분석을 수행하였으며, 성능 분석 결과를 풍동 시험 데이터와 비교하였다. 날개의 전개 성능은 풍동시험에서 나타난 전개 취약 풍향을 정확하게 예측하였다.
SVM은 학습 데이터를 두 개의 집단으로 분리시키는 최적의 초평면을 찾는 이진 분류기로서 우수한 성능 때문에 다양한 분야에서 귀납 추론, 이진 분류, 예측 등을 목적으로 사용되는 알고리즘이다. 또한 대표적인 블랙박스 모델 중 하나이기 때문에 학습 후 생성되는 SVM의 해석에 대한 연구도 활발히 진행되고 있다. 본 논문에서는 SVM 알고리즘을 이용하여 기상 레이더의 데이터 내에 비교적 높은 빈도로 발생하여 기상 예보의 정확도를 감소시키는 비강수에코 중 하나인 선에코를 자동으로 탐지하는 방법에 대한 연구를 수행하였다. 학습 데이터로는 평균 반사도, 크기, 발생 형태, 중심 고도 등과 같은 특성을 활용하였는데, 이는 기상 레이더 데이터에 저장된 다양한 데이터 중 반사도 값을 선택한 후 클러스터링 기법을 통해 추출한 것이다. 이와 같이 학습된 SVM 분류기를 실제 사례를 바탕으로 하여 검증하였으며, Decision Tree 알고리즘을 적용하여 생성한 분류기의 해석을 수행하였다.
본 연구는 8개의 RBS (reduced beam section) 내진 철골모멘트접합부의 실물대 실험결과를 요약한 것이다. 본 실험의 주요변수는 보 웨브 접합법 및 패널존 강도를 택하였다. 균형 패널존 시험체는 접합부의 내진성능을 감소시키지 않으면서, 보와 패널존이 함께 균형적으로 지진에너지를 소산시키도록 설계하여 값비싼 패널존보강판(doubler plates)의 수요를 줄이고자 시도한 것이다. 보 웨브를 용접한 시험체는 모두 특별 연성모멘트골조에서 요구되는 접합부 회전능력을 충분히 발휘하였다. 반면 보 웨브를 볼트접합한 시험체는 조기에 스캘럽을 가로지르는 취성파단이 발생하는 열등한 성능을 보였다. 보 그루브 용접부 자체의 취성파괴가 본 연구에서와 같이 양질의 용접에 의해 방지되면, 스켈럽 부근의 취성파단이 다음에 해결해야 할 문제로 대두되는 경향을 보인다. 보 웨브를 볼팅한 경우에 접합부 취성파단의 빈도가 월등히 높은 이유를 실험 및 해석결과를 토대로 제시하였다 측정된 변형도 데이터에 의할 때, 접합부의 전단력 전달메카니즘은 흔히 가정하는 고전 휨이론에 의한 예측과 전혀 다르다. 이는 전통적 보 웨브 설계법을 재검토할 필요가 있음을 시사하는 것이다. 아울러, 본 연구의 제한된 실험자료 및 접합부에서 요구되는 바람직한 거동기준을 근거로 균형 패널존의 강도범위에 대한 예비적 추정치를 제시하였다.
최근 전 지구적 기후변화의 발생으로 수문현상의 규모와 빈도가 예측하기 어려운 수준으로 변화되고 있다. 이에 따라 정밀한 데이터를 활용한 수공구조물 운영 및 관리의 중요성이 대두되고 있다. 이 중에서도 다목적댐은 이·치수 측면에서 모두 활용되기 때문에 정밀한 댐 운영을 위한 댐 유입량 자료의 수집 및 관리가 필요하지만 현실적 한계로 인해 간접적으로 측정되고 있다. 현재 국내 다목적댐 저수지의 유입량은 댐시설 유지관리 기준(MW, 1994)에서 제시한 저수지 수위 변동량과 댐 방류량의 추정치로부터 계산하는 간접측정방법을 통해 산정되고 있다. 그러나 이와 같은 방법은 태풍이나 집중호우 등 대규모 홍수 발생 시 저수지 수위의 불균일성으로 인한 오차가 나타나며, 음유입량 및 톱니바퀴 형태의 자료가 발생하는 등 정확도 측면에서 한계가 있다. 따라서 본 연구에서는 한국건설기술연구원에서 2008년 개발한 물리적 기반의 분포형 유출해석 모형인 GRM(Grid based Rainfall-Runoff Model)을 활용하여 상류 유량관측소(옥동교 관측소, 영춘 관측소) 관측유량과 충주댐 지점 모의유량간의 경험공식을 도출하였으며, 이를 통해 상류 유량 관측소의 유량자료를 활용한 댐 유입량 직접산정이 가능하도록 하였다. 또한 다중 관측소 활용 시 댐 유입량 모의 성능이 개선되는지 여부를 확인하기 위해 3가지 경우(옥동교 관측소 단일, 영춘 관측소 단일, 옥동교·영춘 관측소 다중)로 구분하고 각 공식의 성능을 비교 평가하였다. 분석 결과 상류 관측소 관측유량과 댐 본체 지점의 모의유량이 비교적 높은 상관관계(0.79~0.96)를 보였으며, 단일 관측소를 활용한 공식 대비 다중 관측소를 활용한 공식이 더 높은 결정계수를 보였다.
지구과학 데이터(지오데이터)의 공간 이질성, 희소성 및 고차원성으로 인해 공간 분포 추정에 어려움이 있다. 따라서 지구과학의 많은 응용 분야에서 지오데이터의 고유 특성을 고려할 수 있는 공간 추정 기법이 필요하다. 본 연구에서는 기계 학습 알고리즘 중 하나인 가우시안 혼합 모델(Gaussian Mixture Model; GMM)을 이용하여 공간 예측 방법을 제공하고자 하였다. 제안된 기법의 성능을 검증하기 위해, 옛 제련소 부지에서 휴대용 X선 형광분석기(PXRF) 및 유도결합플라즈마-원자방출분광법(ICP-AES)을 이용하여 분석된 토양 농도 자료를 활용하였다. ICP-AES를 이용해 분석된 As와 Pb를 주변수로 하고, 나머지 자료는 보조변수로 활용하였다. 다차원의 보조변수 중 중요 변수를 선별하기 위해 랜덤포레스트 기반의 변수선택법을 적용하였다. ICP-AES 및 PXRF를 통해 구축된 다변량 데이터를 사용한 GMM의 결과를 단변량 및 이변량 데이터를 사용한 정규 크리깅(Ordinary Kriging; OK) 및 정규 공동크리깅(Ordinary Co-Kriging; OCK)의 결과와 비교하였다. GMM의 결과는 OK 및 OCK의 결과보다 낮은 평균 제곱근 편차(RMSE; 비소는 최대 0.11 및 납은 0.33까지 향상)와 높은 상관관계(r; 비소는 최대 0.31 및 납은 0.46까지 향상)를 제공하였다. 이는 GMM을 사용할 경우 토양 오염의 범위 해석의 성능을 향상시킬 수 있음을 지시한다. 본 연구는 다 변량 공간추정 접근법이 복잡하고 이질적인 지질 및 지구 화학자료의 특징을 이해하는 데 효과적으로 적용될 수 있음을 증명하였다.
고체 추진기관을 빠르고 정확하게 설계하기 위해 통합 설계 시스템을 개발하였다. 이 시스템에는 체계 요구 조건으로부터 전체적인 크기를 결정하는 사이징 설계 모듈과 구조체 설계, 그레인 설계, 성능 예측 모듈과 같이 네 개의 모듈로 구성되어 고체 추진 기관의 기본설계를 수행할 수 있게 개발 되었다. 본 연구에서 개발된 시스템을 사용하여 고체 추진기관의 기본 설계를 하는 과정은 다음과 같다. 먼저, 체계 요구 조건으로부터 전체적인 크기를 결정한 후 구조체 및 그레인 설계에 이용한다. 구조체설계 모듈로 구조체의 기본 설계를 수행 한 후 이를 이용해 그레인 설계 모듈로 그레인 기본 설계와 이 후 성능 계산에 필요한 데이터를 생성할 수 있다. 성능 해석 모듈은 기본 설계가 완료된 추진 기관의 성능을 예측하여 체계 요구 조건에 부합되는지를 확인하여 재설계 여부를 결정한다.
본 논문에서는 가상의 V상차 작업을 위한 이벤트 기반의 휠로더 운전자 모델을 개발하였다. 운전자 모델 개발의 목적은 휠로더의 일반적인 작업인 V상차 작업 시 동역학적 해석과 작업성능을 가상의 시뮬레이션 모델과 운전자 입력을 이용해 예측 및 평가하는 것이다. V상차 작업은 4단계로 이루어져 있으며, 총 8 개의 이벤트로 인해 순차적으로 작업이 진행된다. 개발된 3D 휠로더 시뮬레이션 모델은 Matlab/Simulink 환경에서 구성 되었으며, 시뮬레이션 결과는 V상차 작업의 실차 데이터와 비교 되었다. 본 연구에서 개발된 운전자 모델로 향후 가상의 V상차 작업에 대한 작업성능 및 동역학적 해석이 가능할 것으로 본다.
본 연구에서는 머신 러닝을 통해 하중 유형에 따른 구간을 나누어 각 하중 유형에 강한 적층 각도 순서가 배치되는 PIC 설계 방법이 범퍼 빔에 적용되었다. 머신 러닝을 적용하기 위한 학습 데이터의 입력 값과 라벨은 각각 전체 요소 중 일부인 참조 요소의 좌표와 하중 유형으로 정의되었다. 좌표 값을 나타내는 방법인 2D 표현 방법과 3D 표현 방법을 비교하기 위하여 각각의 방법으로 학습 데이터 생성 및 머신 러닝 모델이 학습되었다. 2D 표현 방법은 유한요소 모델을 각 면으로 나누고 그에 따른 학습 데이터 생성 및 머신 러닝 모델을 학습시키는 방법이며, 3D 표현 방법은 유한요소 모델 전체에서 학습 데이터를 생성하여 하나의 머신 러닝 모델을 학습시키는 방법이다. 머신 러닝 모델의 성능에 영향을 미치는 하이퍼파라미터는 베이지안 알고리즘을 통해 최적 값으로 튜닝되었으며, 튜닝 된 모델 중 k-NN 분류 방법이 가장 높은 예측률과 AUC-ROC로 나타났다. 그리고 2D 표현 방법과 3D 표현 방법 중 3D 표현 방법이 더 높은 성능을 보였다. 튜닝 된 머신 러닝 모델을 통해 예측된 하중 유형 데이터가 유한요소 모델에 매핑되었으며, 유한요소 해석을 통해 비교 검증되었다. 3D 표현 방법의 머신 러닝 모델로 설계된 PIC 방법이 강도 측면에서 더 우수함이 검증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.