본 논문에서는 필터링(Filtering)과 웹 크롤링(Web Crawling) 기술을 이용하여 개인 맞춤형 실시간 정보제공 애플리케이션을 구현하였다. 구현한 애플리케이션은 사용자가 설정한 키워드를 웹페이지 내에서 사용자가 선택한 키워드를 기준으로 Jsoup 라이브러리를 통해 웹 크롤링을 수행하고, MySQL 데이터베이스에 저장한다. 저장한 데이터는 Flutter를 이용해 구현한 애플리케이션으로 사용자에게 제공한다. 또한 FCM(Firebase Cloud Messaging)을 이용하여 모바일 푸시 알람을 제공한다. 이를 통해 사용자는 원하는 정보를 빠르고 효율적으로 얻을 수 있다. 또한 빅데이터가 생성되는 사물인터넷(Internet of things)에도 적용하여 사용자에게 필요한 정보만 제공할 수 있을 것으로 기대한다.
최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.
협력 필터링은 공통된 흥미를 가진 다른 사용자들로부터 정보를 획득하여 그들의 의견에 따라 웹 사이트를 추천하는 방법이다. 과거 수년간, 이 방법은 서적, 식품, 영화 등 다양한 e-commerce 영역에서 사용되었다. 본 논문에서는 협력 필터링 시스템에서 추천 항목을 결정하기 위한 사용자 간의 유사도 측정 방법을 제시하였다. 기존 연구에서는 사용자가 부여했던 전체 평가등급들의 분포를 고려하지 않은 채각 평가등급을 독립적으로 취급하여 사용자간 유사도를 산출하였으나, 본 연구에서는 사용자의 평가 등급 범위 내에서의 등급의 위치와 순위 정보를 이용하여 유사도를 산출하였다. 실제 데이터집합 상에서 평균 절대 오차의 성능을 측정한 결과, 대부분의 기존 방법들에 비해 제안 방법은 매우 우수하였고, 특히 정해진 등급범위가 클 경우에 그러하였다.
모바일 환경에 적합한 RFID 응용 프로그램들을 실시간으로 운영하기 위해서는 수집 데이터를 실시간으로 가공하여 유용한 정보만을 응용 클라이언트로 전달하는 모바일 단말 전용 RFID 미들웨어가 필요하다. 본 논문에서는 모바일 환경에서 실시간 데이터 처리를 위한 모바일 RFID 미들웨어 시스템을 설계하고 구현 하였다. 구현된 모바일 RFID 미들웨어 시스템은 태그 데이터를 수집하는 모바일 리더 인터페이스, 태그 데이터를 의미있는 데이터로 가공하여 응용인터페이스에게로 전송하는 모바일 필터링 엔진, 그리고 기존 모바일 응용과의 인터페이스를 위해 m-SOAP 응용접근프로토콜을 지원하는 모바일 응용 인터페이스 구현 하였다. 개발된 미들웨어 엔진의 필터링 속도도 모바일 단말 환경 특성에 적합한 성능을 보여준다.
인터넷이 발달하고 접할 수 있는 데이터가 폭증하면서 데이터들에서 사용자는 자신의 기호에 맞는 정보를 찾기가 점점 힘들어 진다. 추천 시스템은 사용자의 기호에 맞는 정보들을 추출하는데 큰 도움을 줄 수 있다. 본 연구는 강화 학습 알고리즘을 기반으로 한 하이브리드 추천 시스템을 사용하여 사용자의 선호도 예측에 대한 정확도를 향상 시켰다. 본 연구는 2000장의 이미지로 테스트를 진행하였다. 테스트 할 때 평균 절대 오차를 구하여 분석한 결과 제안하는 시스템이 협업적 필터링, 내용 기반 필터링, 단순 하이브리드 필터링의 성능보다 더 우수한 것으로 나타났다.
USN/RFID는 유비쿼터스 컴퓨팅을 위한 핵심기술로서 다양한 센서기술과 프로세서 집적기술 그리고 무선네트워크 기술을 이용해서 실제 물리적 환경 정보를 원격에서 손쉽게 수집하고 모니터링 하는 것이 가능하다. USN/RFID는 실시간 객체의 식별과 정보의 수집을 위한 기술로 짧은 시간에 많은 양의 데이터를 발생시킨다. 이러한 많은 양의 데이터를 효과적으로 처리하기 위해서는 데이터의 패턴을 정의하여 의미 있는 데이터를 필터링 할 수 있는 기술이 필수적이다. 본 논문에서는 전시물 주변에서 발생하는 데이터를 효과적으로 처리하기 위해 ECA 규칙을 사용하여 의미 있는 데이터를 구성하고 관리자가 전시물 관련 보안 정보를 실시간으로 관리할 수 있는 모니터링 시스템을 제안한다.
한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
/
pp.253-256
/
2001
본 논문에서는 전처리 과정에서 잡음의 효과적 처리를 위해 기존의 필터 방식들이 가지는 단점인 경계 부분의 블러링 현상을 줄이고 정확한 에지 위치를 보존할 수 있는 비등방성 확산 필터를 사용하여 CT나 MRI 2차원 영상 슬라이스들을 만들어내고 이 슬라이스들을 3차원 데이터 셋으로 구성하여 3차원 공간의 볼륨 데이터로 시각적인 영상정보를 얻는데 있다.
XML 트리 데이터들로부터 빈번 서브 트리들을 추출하는 기존 방법들은 복잡하고 다수의 입력데이터 스캐닝을 필요로 할 뿐만 아니라 빈번 서브 트리를 구하기 위해 에지 하나하나의 조인 작업을 필요로 하였다. 이는 결과적으로 많은 수행 시간을 요한다. 본 논문에서는 트리데이터를 레벨 별로 나누고 이를 마치 채로 거르듯이 필터링하여 특정 수치 이상의 출현 횟수를 가지는 노드들만을 남겨 빠르게 빈번한 서브 트리를 찾고, 이를 이용하여 XML 연관규칙들을 생성하는 방법을 제시한다. 제시된 방법을 위해서 PairSet 이라는 새로운 자료구조를 도입하였으며, 이를 이용하는 크로스필터링 알고리즘을 개발하여 제시하였다.
데이터 스트림은 다양한 입력속도로 끊임없이 입력되고 데이터 스트림을 저장하는 메모리상의 저장공간은 유한하기 때문에 때때로 저장공간을 초과하는 데이터가 입력되는 경우가 발생한다. 이 문제를 해결하기 위해 초과되는 데이터의 일부를 버려 메모리 초과를 방지하는 부하제한 기법이 연구되었다. 기존의 부하제한 기법은 데이터의 편차에 따른 최적의 샘플링 비율을 갖는 랜덤 샘플링을 사용한다. 그러나 이 기법은 공간적 특성을 고려하지 않기 때문에 공간 질의에 사용되는 데이터와 사용되지 않는 데이터를 구분하지 않고 샘플링 한다. 그래서 공간 질의가 포함되는 u-GIS 환경에서는 질의 정확도가 감소하는 문제가 발생하였다. 본 논문에서는 공간 질의와 비공간 질의가 동시에 발생하는 u-GIS 환경에서 질의 정확도를 보다 향상 시키는 부하제한 기법을 연구하였다. 이 기법은 동시에 실행되는 공간 질의의 공간적 이용도에 따라 차등적으로 샘플링을 하여, 질의에 이용될 확률이 낮은 데이터를 샘플링을 한다. 제안된 부하제한 기법은 공간질의가 존재하는 경우 질의 정확도를 크게 향상 시켰고, 샘플링 중 공간 필터링 연산을 적용하여 질의처리 속도도 일부 향상 시켰다.
정보 통신 및 인공지능 기술의 발전은 우리 군의 지휘통제체계의 지능화를 요구하며, 이를 달성하기 위해 다양한 시도가 이루어지고 있다. 본 논문은 특히, 지휘통제 워크플로우에서 활용 가능한 정보의 양이 폭발적으로 증가함에 따라 지휘통제체계 사용자에게 제공되는 정보 중 수행 업무에 가장 핵심적인 정보를 제공할 수 있는 협업 필터링(Collaborative Filtering, CF) 및 추천 시스템(Recommendation System, RS)에 주목한다. 군 지휘통제체계에서 정보의 필터링을 수행하는 RS는 가장 우선 설명 가능한 추천을 수행하여야 하며, 그 다음 지휘관들이 임무를 수행하는 다양한 상황을 고려한 추천이 수행되어야 한다. 본 논문에서는 지휘통제 워크플로우를 지원하기 위하여 정보를 선택적으로 추천하는 contextual pre-filtering CARS 프레임워크를 제안한다. 제안된 프레임워크는 1) 지휘결심자의 상황 및 관계에 기반하여 데이터를 사전에 필터링하는 contextual pre-filtering, 2) CF의 취약한 데이터 희소성 문제를 극복하기 위한 피쳐 선택, 3) 피쳐 간의 디스턴스를 사용자의 유사도 산출에 활용한 CF, 및 4) 사용자의 선호를 반영하기 위한 규칙 기반 포스트 필터링의 4 단계로 구성되어 있다. 본 연구의 우수성을 평가하기 위해서 상용 수준의 실험 데이터셋 2종에 대해 기존 CF 방법의 다양한 디스턴스 방법을 적용하여 비교 실험하였다. 비교 실험 결과 제안된 프레임워크가 3가지 평가지표(MAE, MSE, MSLE) 측면에서 우수함을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.