• 제목/요약/키워드: 데이터 특징 추출

검색결과 1,547건 처리시간 0.031초

기계학습을 활용한 XRD 광물 조성 예측 모델 개발 (Development of Prediction Model for XRD Mineral Composition Using Machine Learning)

  • 박선영;이경북;최지영;박주영
    • 광물과 암석
    • /
    • 제37권2호
    • /
    • pp.23-34
    • /
    • 2024
  • 퇴적물 내에서 가스 하이드레이트(gas hydrate, GH) 부존 가능성을 파악하기 위해서는 획득된 코어 시료의 광물 조성을 아는 것이 필수적이다. GH 탐사를 진행하며 채취된 울릉분지 코어 시료에서 각 시료 별 488개의 X선 회절 분석(X-ray diffraction, XRD)을 활용하여 광물 조성 값을 확보하였다. 488개의 학습 자료를 기반으로 입력값을 3100개의 XRD 피크 세기로 출력값을 12개의 광물 조성으로 기계학습을 수행하였다. 488개의 데이터를 307개의 학습자료, 132개의 검증자료, 49개의 테스트 자료로 나누어 학습을 수행하였고 랜덤 포레스트(random forest, RF) 알고리즘을 활용하여 결과를 획득하였다. 학습 결과 전문가가 예측한 광물 조성과 기계학습을 통해 예측한 값의 차이인 평균 절대 오차(mean absolute error, MAE)가 1.35%로 확인되었다. 개발된 모델 성능의 개선을 위해 주성분분석(principal component analysis, PCA)을 활용하여 XRD 피크의 핵심 특징을 추출하여 입력자료의 차원을 줄여 추가적으로 기계학습을 수행한 결과 MAE 값이 최대 1.23%까지 감소하는 것을 볼 수 있었고 시간적인 측면에서 학습 효율도 향상된 것을 확인할 수 있었다.

Radiomics를 이용한 1 cm 이상의 갑상선 유두암의 초음파 영상 분석: 림프절 전이 예측을 위한 잠재적인 바이오마커 (Radiomics Analysis of Gray-Scale Ultrasonographic Images of Papillary Thyroid Carcinoma > 1 cm: Potential Biomarker for the Prediction of Lymph Node Metastasis)

  • 정현정;한경화;이은정;윤정현;박영진;이민아;조은;곽진영
    • 대한영상의학회지
    • /
    • 제84권1호
    • /
    • pp.185-196
    • /
    • 2023
  • 목적 갑상선 유두암 환자에서 림프절 전이를 예측할 수 있는 잠재적인 바이오마커를 개발하기 위해 초음파 영상에 대한 radiomics를 조사하는 것이다. 대상과 방법 2013년 8월부터 2014년 5월까지 431명의 환자가 연구에 포함되었고 통계 소프트웨어를 사용하여 훈련 및 검증 세트로 구분되었다. 총 730개의 radiomics 특징이 자동으로 추출되었다. 훈련 데이터 세트에서 가장 예측 가능한 특징을 선택하기 위해 최소 절대 수축 및 선택 연산자가 사용되었다. 결과 Radiomics 점수는 림프절 전이와 관련이 있었다(p < 0.001). 림프절 전이는 젊은 연령(p = 0.007) 및 더 큰 종양 크기(p = 0.007)와 같은 다른 임상 변수와도 관련이 있었다. 수신자 조작 특성 곡선 하 면적 결과 값은 훈련 세트의 경우 0.687 (95% 신뢰 구간: 0.616-0.759), 검증 세트의 경우 0.650 (95% 신뢰 구간: 0.575-0.726)이었다. 결론 본 연구 결과는 초음파 영상 기반의 radiomics가 papillary thyroid carcinoma 환자에서 경부 림프절 전이를 예측하고 바이오마커로 작용할 가능성을 보여주었다.

피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석 (Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum)

  • 김정엽
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권1호
    • /
    • pp.41-50
    • /
    • 2022
  • 본 논문에서는 멜라닌과 헤모글로빈 등의 피부 색상을 구성하는 주요한 요소들을 카메라의 RGB 신호로부터 직접 계산하는 방법을 제안한다. 피부 색상의 주요한 요소들은 통상적으로 특정한 장비를 이용하여 분광 반사도를 측정하고, 측정된 빛의 일부 파장에서의 값들을 중심으로 재구성하는 방법을 사용한다. 이와 같은 방법으로 산출된 값들은 멜라닌 지수, 홍반 지수와 같은 것들이 있으며, 분광반사도 측정 장치나 다중스펙트럼 카메라 등의 특수한 장비를 필요로 한다. 일반적인 디지털 카메라로부터 이와 같은 성분요소들에 대한 직접적인 계산방법은 찾아보기 어려우며, 독립성분 분석(Independent Component Analysis)을 이용하여 멜라닌과 헤모글로빈의 농도를 간접적으로 계산하는 방법은 제안되어 있다. 이 방법은 일정한 RGB 영상의 영역을 대상으로 하여, 주성분 분석(Principal Component Analysis)과 유사한 방식으로 멜라닌과 헤모글로빈의 특성벡터를 추출하고, 농도를 계산할 수 있다. 이 방법의 단점은 일정한 영역의 화소 그룹을 입력으로 이용하기 때문에 화소단위의 직접적인 계산이 어렵고, 추출된 특성벡터는 최적화 방식으로 구현하기 때문에 실행할 때마다 다른 값으로 계산되는 경향이 있다. 최종적인 계산은 특성벡터 자체를 활용하지 않고, RGB 좌표계로 다시 변환하여 멜라닌과 헤모글로빈의 성분을 나타내는 영상 형태로 결정된다. 이 방법의 단점을 개선하기 위하여 제안하는 방법은 특성벡터를 활용하여 RGB 좌표계가 아닌 특징 공간에서 멜라닌과 헤모글로빈의 성분 값을 계산하는 것과, 일반적인 디지털 카메라를 이용하여 피부색에 해당하는 분광 반사도를 계산하는 방법, 분광 반사도를 이용하여 멜라닌과 옥시헤모글로빈, 디옥시헤모글로빈, 카로티노이드 등의 피부색소를 구성하는 세부 성분들의 계산방법 등이다. 제안한 방법은 분광 반사도 측정 장치나 다중 스펙트럼 카메라 등의 특수한 장비를 필요로 하지 않으며, 기존 방법과는 달리 화소단위의 직접적인 계산이 가능하고, 반복 실행에도 동일한 특성을 얻을 수 있다. 제안한 방법은 기존에 비하여 성능의 안정성을 나타내는 표준편차가 15% 수준으로 낮게 나타나 6배 정도의 안정적인 성능을 가진 것으로 추정된다.

공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구 (The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure)

  • 김근환;권태훈;전승표
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.1-33
    • /
    • 2019
  • 제조 중소기업들은 지속적인 성장과 생존을 위해 새로운 제품 개발에 필요한 많은 정보가 필요할 뿐만 아니라 자원의 한계를 극복하기 위한 네트워킹(networking)을 추구하지만, 규모의 한계로 인해 한계점에 봉착하게 된다. 초연결성으로 인해 비즈니스 환경의 복잡성과 불확실성이 더욱 높아지는 새로운 시대에 중소기업은 신속한 정보 확보와 네트워킹 문제를 해결이 더욱 절실해지고 있다. 이러한 문제를 해결하기 위해 공공기관인 정부출연(연)구기관(이하 '출연(연)')은 중소기업의 정보 비대칭성 문제를 해결해야하는 중요한 임무와 역할을 맞이하고 있다. 본 연구에서는 비즈니스 인텔리젼스의 경쟁 지능화(competitive intelligence) 기능과 외부 네트워크 활성화를 위한 서비스 인프라(service infrastructure)의 기능을 포함한 공공 정보지원 인프라를 통한 간접지원의 성과를 확산하고자 하는 목적으로 출연(연)이 중소기업의 혁신역량 제고를 위해 제공하는 공공 정보지원 인프라를 활용하는 중소기업의 차별적 특징을 파악하고, 인프라가 기업의 성과에 어떻게 기여하는 가를 규명하고자 하였다. 이를 위해 첫째, 출연(연)이 제공한 정보지원 인프라를 활용하는 제조 중소기업은 다른 중소기업과 어떤 차별적인 특정이 있는가? 라는 연구 질의를 도출하였다. 추가적으로 단순히 선택적 편의 여부를 판단하는 것을 넘어서 출연(연) 정보지원 인프라를 활용한 제조 중소기업의 특징을 복수 집단의 특징과 비교하는 연구를 진행하였다. 둘째, 출연(연)이 제공하는 정보지원 인프라를 활용한 제조 중소기업의 외부 네트워킹 역량이 제품 경쟁력에 어떻게 기여했는가? 라는 연구 질의이다. 본 연구에서 공공 정보지원 인프라에 의해서 강화된 외부 네트워킹 역량이 어떻게 제품 경쟁력에 영향을 미쳤는지 정밀하게 분석하기 위해 복수의 변수에 대한 매개 및 조절 효과 분석을 수행하였다. 연구 모형을 도출하기하기 위해 첫째, 외부 네트워킹이 기술혁신성과에 영향력에 대한 평가를 수행하였다. 일반적으로 기업들은 외부 네트워킹(networking) 전략을 통해 혁신에 필요한 가치 있는 정보를 획득할 수 있기 때문에 기술혁신성과를 높일 수 있다. 정보 획득은 중소 제조기업 경영자의 혁신에 대한 인식을 강화할 뿐만아니라, 의사결정을 효율적으로 하여 경쟁력을 강화시킬 수 있게 된다. 대기업에 비해 인력과 자금의 규모 한계를 극복하기 위해 중소기업은 외부 조직과의 협력관계를 보다 적극적으로 추구한다. 둘째, 기술사업화 역량이 기술혁신성과에 미치는 관계에 대한 평가를 수행하였다. 기술사업화는 생산과 마케팅을 통합하여 새로운 기술을 만드는 역량을 말한다. 우수한 생산 역량을 보유한 기업은 소비자의 수요를 가격, 품질, 신기능 측면에서 신속하게 충족시킬 수 있어 시장내 경쟁우위를 창출하고, 그 결과로 높은 재무적 혁신적 성과를 가져온다고 본다. 혁신적인 기업은 생산 역량과 마케팅 역량에서 일반 기업보다 높은 성과를 나타내는데, 기술혁신성과의 대표 지표로 제품 경쟁력을 지목하고 있다. 마지막으로 기업의 규모가 작을수록 새로운 혁신 정보를 확보할 수 있는 자체 정보지원 인프라가 없는 경향이 있다. 중소기업용 정보인프라는 기업의 제품 또는 서비스 역량을 강화하기 위한 전략에 필요한 중요한 정보를 확보할 수 있어야 하며, 데이터에 대한 해석 기능이 있어야 하고, 기업의 성장과 발전을 위한 다양한 주제(대기업, 공급자, 소비자 등)와의 협력 전략을 수립을 도울 수 있는 기능이 요구된다. 종합하면, 연구모형은 외부 네트워킹 역량(독립변수)이 기술혁신성과인 제품 경쟁력(종속변수)에 영향을 주는 기본 모형에 기술사업화 역량을 매개요인으로 적용하였고, 이들의 관계에 기업의 내부역량(연구원 집중도, 매출액, 업력)이 영향을 줄 수 있기 때문에 기업의 내부역량과 관련된 변수들을 통제하였다. 또한 KISTI가 제공한 공공 정보지원 인프라 활용한 기업별 역량 차이를 분석하기 위해, 정보지원 인프라 활용(효율성)과 관련된 KISTI 외부 기술사업화 전문가(멘토링) 정보지원 횟수의 조절 변수로 고려하였다. 본 연구에서 활용한 데이터 원천은 2차 정보인 '제8차 중소기업 기술통계조사' 자료와 1차 정보인 KISTI의 직접 설문 자료다. '제8차 중소기업 기술통계조사' 는 중소기업청과 중소기업중앙회에서 공동으로 매년 실시되고 있으며, 설문 조사의 모집단은 종사자수 5인 이상 300인 미만인 제조업 및 제조업 외 기업 중에서 기술개발을 수행하고 있는 중소기업 43,204개사이다. 이 중에서 2014년 12월 31일 현재 기준으로 기술개발을 수행하고 있는 3,300개 중소기업을 표본추출하여 방문조사를 실시하여 수집한 자료이다. 본 연구에서 KISTI의 정보지원 인프라를 통해 지원받은 290개의 KISTI 패밀리 기업(ASTI)을 대상으로 2017년에 전자 메일을 통해 자료를 수집하였다. 송부된 290개의 설문지 중 222개의 기업에서 회신을 보내왔으며 그 중에서 설문 내용이 유효한 설문 조사는 149건으로 활용율은 51.3%였다. 분석 결과에 대한 살펴보면 다음과 같다. 규모면에서는 공공 정보지원 인프라 활용 제조 중소기업(ASTI 설문 집단)과 R&D 중소기업(KBIZ 설문 집단)의 성향은 통계적으로 유의미하게 차이가 있었지만, 보다 많은 변수를 종합적으로 보면 크게 다르지 않은 집단이라고 판단했다. 공공 정보지원 인프라를 활용하는 제조 중소기업은 이미 출연(연)과 협업이 가능한 집단을 대표하는 성향 보이는 것으로 나타났다. 외부 네트워킹 역량 강화가 제품 경쟁력 제고에 기여하는데 있어서 기술사업화 역량(마케팅 및 생산 역량)이 가지는 매개 효과의 가능성을 탐색하기 위해서 먼저 통제 변수는 고려하지 않고, Baron과 Kenny(1986)의 매개 효과 분석을 수행했다. 분석결과 외부 네트워크 역량 강화 효과가 제품 경쟁력을 강화시키는 것으로 보였지만, 실제는 기술사업화 역량의 제고를 통해 제품 경쟁력을 강화시키는 것으로 나타났다. 공공 정보지원 인프라 활용의 효과성을 판단하기 위한 멘토링 정보지원 횟수의 조절효과 분석을 위해 3단계의 위계적 회귀분석을 수행하였다. 분석 결과 외부 네트워킹 역량과 멘토링 정보지원 횟수의 상호작용항이 혁신성과(제품 경쟁력)에 유의한 영향을 미쳤을 뿐 아니라, 모델의 설명력도 증가하여, 멘토링 정보지원 횟수의 조절 효과가 검증되었다. 마지막으로 앞서 확인된 복수 매개효과와 조절효과가 동시에 나타날 수 있는 가능성을 판단하기 위해서 매개된 조절효과를 검토했다. 분석결과 외부 네트워킹 역량이 높아지면 제품 경쟁력 제고에 양의 영향을 주지만, 조절 변수인 멘토링 지원 횟수가 높아질수록 그 영향은 오히려 약화되었다. 그리고 외부 네트워킹 역량이 높아지면 사업화 역량(마케팅과 생산)이 높아져서 제품 경쟁력이 높아지며, 조절변수인 멘토링 지원 횟수가 높아지면 독립변수 외부 네트워킹 역량이 매개변수 생산 역량에 미치는 역량이 작아졌다. 종합하면, 외부 네트워킹 역량의 제고는 제품 경쟁력을 높이는데 기여하는데, 직접적 기여하지는 않지만 마케팅과 생산 역량을 높여 간접적으로 기여한다(완전 매개 효과). 또한 이 과정에서 멘토링의 정보적 지원 횟수는 외부 네트워킹 역량 제고가 생산 역량을 제고하는 매개효과에 영향을 준다(순수 조절 효과). 그러나 멘토링 정보 지원 횟수는 마케팅 역량 제고와 제품경쟁력에 별다른 조절 효과를 보이진 않는 것으로 나타났다. 연구를 통한 시사점은 다음과 같다. KISTI의 정보지원 인프라는 서비스 활용 마케팅이 이미 잘 진행되고 있다는 결론을 이끌 수도 있지만, 반면에 시장의 정보 불균형을 해소하는 공공적 기능보다는(열위 기업 지원) 성과가 잘 도출될 수 있는 집단을 지원해서(의도적 선택적 편의) 성과가 잘 나타나도록 관리하고 있다는 결론에 이를 수 있다. 연구 결과를 통해서 우리는 공공 정보지원 인프라가 어떻게 제품경쟁력 제고에 기여하는지 확인했는데, 여기서 우리는 다음과 같은 몇 가지 정책적 시사점을 도출할 수 있다. 첫째, 정보지원 인프라는 분석된 정보뿐만아니라 이 정보를 제공하는 기관(또는 전문가)과 지속적인 교류나 이런 기관을 찾는 역량을 높이는 기능이 있어야 한다. 둘째, 공공 정보지원 (온라인) 인프라의 활용이 효과적이라면 병행적인 오프라인 지원인 정보 멘토링이 지속적으로 제공될 필요는 없으며, 오히려 멘토링과 같은 오프라인 병행 지원은 성과 제고보다는 이상징후 감시에 적절한 장치로 활용되어야 한다. 셋째, 셋째, 공공 정보지원 인프라를 통한 네트워킹 역량 제고와 이를 통한 제품경쟁력 제고 효과는 특정 중소기업에서 나타나기 보다는 대부분 형태의 기업에서 나타나기 때문에, 중소기업이 활용 능력을 제고할 노력이 요구된다.

데이터마이닝을 활용한 사랑의 형태에 따른 연인관계 몰입수준 및 관계 지속여부 예측 (Prediction of commitment and persistence in heterosexual involvements according to the styles of loving using a datamining technique)

  • 박윤주
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.69-85
    • /
    • 2016
  • 연인과의 성공적인 관계형성은 인생의 만족감을 결정짓는 핵심적인 요소 중 하나이다. 기존에 심리학 분야에서는 성공적인 연인관계에 영향을 미치는 요인들에 대한 다양한 연구가 수행되어 왔으나, 주로 통계적인 분석기법에 기반하고 있기 때문에 복잡한 비선형의 관계를 분석하고, 특징을 추출하는 데에는 한계가 있었다. 이에, 본 연구는, 기존의 통계적인 분석 기법과 더불어, 데이터마이닝의 의사결정나무 분석기법을 활용하여 사랑의 형태에 따른 연인관계의 몰입(commitment) 수준과 관계지속 여부를 분석하였다. 특히, 기존 연구에서 도출된 주요 변인들 이외에 사랑의 여섯 가지 형태인 에로스(eros), 루두스(ludus), 스트로게(storge), 매니아(mania), 프래그마(pragma) 그리고 아가페(agape)를 추가적으로 고려하여, 이들이 연인관계에서 서로에 대한 몰입수준 및 연인관계 지속여부에 어떠한 영향을 미치는지 분석하고, 예측하는 모형을 수립하였다. 본 연구에는 실제 남녀커플 105쌍, 총 210명에 대한 데이터가 활용되었다. 본 연구결과 연인관계 몰입수준 및 관계 지속여부의 영향요인으로, 기존에 심리학 분야에서 제시된 변수들 이외에, 에로스, 아가페, 프래그마 등이 유의한 영향을 미친다는 것을 확인하였다. 특히, 남성은 아가페적 사랑의 형태가 몰입에 중요한 영향을 미치는 반면, 여성은 에로스적 사랑의 형태가 더욱 중요한 영향을 미치는 것으로 나타났다. 또한, 연인관계 지속여부에는 남성의 나르시시즘, 만족, 투자 및 매니아적 성향이 영향을 주고 있는 것으로 나타난 반면, 여성의 경우, 여성이 남성을 매니아적으로 사랑하는 정도만이 영향을 주고 있어, 남성이 관계의 지속 또는 결별에 더욱 결정적인 영향을 미치고 있는 것을 알 수 있었다. 이러한 연구는 데이터마이닝의 적용분야를 심리학 영역으로 확장한 융합연구로, 연인관계에 대한 새로운 분석을 시도하였다는 점에서 의의가 있으며, 조화로운 연인관계를 형성하는데 실질적인 시사점을 제공할 수 있을 것으로 기대된다.

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.

Bi-LSTM 기반의 한국어 감성사전 구축 방안 (KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon)

  • 박상민;나철원;최민성;이다희;온병원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.219-240
    • /
    • 2018
  • 감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.