• Title/Summary/Keyword: 데이터 취득

Search Result 1,109, Processing Time 0.023 seconds

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Real-time Monocular Camera Pose Estimation using a Particle Filiter Intergrated with UKF (UKF와 연동된 입자필터를 이용한 실시간 단안시 카메라 추적 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.315-324
    • /
    • 2023
  • In this paper, we propose a real-time pose estimation method for a monocular camera using a particle filter integrated with UKF (unscented Kalman filter). While conventional camera tracking techniques combine camera images with data from additional devices such as gyroscopes and accelerometers, the proposed method aims to use only two-dimensional visual information from the camera without additional sensors. This leads to a significant simplification in the hardware configuration. The proposed approach is based on a particle filter integrated with UKF. The pose of the camera is estimated using UKF, which is defined individually for each particle. Statistics regarding the camera state are derived from all particles of the particle filter, from which the real-time camera pose information is computed. The proposed method demonstrates robust tracking, even in the case of rapid camera shakes and severe scene occlusions. The experiments show that our method remains robust even when most of the feature points in the image are obscured. In addition, we verify that when the number of particles is 35, the processing time per frame is approximately 25ms, which confirms that there are no issues with real-time processing.

An Empirical Study on Development of Traffic Safety Facilities for Safe Autonomous Vehicle Operation in Construction Areas (자율주행자동차의 공사구간 안전주행 지원을 위한 교통안전시설물 개발 실증 연구)

  • Jiyoon Kim;Jisoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.163-181
    • /
    • 2023
  • Improving the detection performance of facilities corresponding to the sensors of autonomous vehicles helps driving safety. In the road and transportation field, research is being conducted to improve the detection performance of sensors by road infrastructure or facilities. As part of this on the development of autonomous driving support infrastructure, the shape of traffic cones and drums to ensure sufficient LiDAR detection performance even rainy conditions and maintain the line-of-sight guidance function in construction zones improvement effect. The principle was to increase reflection performance and ensure no significant difference in shape from existing facilities. Traffic cones were manufactured in square pyramid shapes instead of cones, and drums were manufactured in hexagonal and octagonal pillar shapes instead of cylinders. LiDAR detection data for the facility was confirmed on a clear day and with 20 mm/h and 40 mm/h rainfall. The detection performance of the square pyramid-shaped traffic cone and octagonal column-shaped drum was to the existing facility. On the other hand, deviations occurred due to repeated measurements, and significance could not be confirmed through statistical analysis. By reflecting these results, future studies will seek a form in which data can be obtained uniformly despite the diversity of measurement environments.

A study on TOC monitoring and spatial distribution analysis using a spectrometer in rivers (하천에서의 분광측정기를 이용한 TOC 모니터링 및 공간분포 분석 연구)

  • Yoon, Soo Bin;Lee, Chang Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.815-822
    • /
    • 2023
  • Organic pollution is one of the most common forms of water contamination. Under the Water Quality Conservation Act, indicators for measuring organic substances include BOD, COD, and TOC. Analysis of BOD and COD is labor-intensive, and in the case of organic substances where biological decomposition is not feasible or toxic substances are present, the accuracy is often low. Therefore, the Ministry of Environment is shifting towards TOC-centric management. With advancements in sensor technology today, various parameters can be monitored using sensors. In this study, digital monitoring of river TOC using a spectrophotometer called Spectro::lyser V3 was conducted. Initially, experiments were carried out at the Andong River Experiment Center to assess the applicability of the measurement equipment. Subsequently, data collected at the confluence of the Nakdong River was analyzed for the spatial distribution of TOC using the Kriging technique. This research proposes the utilization of sensors for river TOC monitoring and spatial distribution analysis. Real-time monitoring of changes in river TOC concentration can serve as fundamental data for pollution monitoring and response. Sensor-based river monitoring offers advantages in terms of temporal resolution and real-time data acquisition. When various spatial information interpretation methods are applied, it is expected to contribute to diverse studies such as aquatic ecological health, river water source selection, and stratification analysis in the future.

A Study on the Impact of AI Edge Computing Technology on Reducing Traffic Accidents at Non-signalized Intersections on Residential Road (이면도로 비신호교차로에서 AI 기반 엣지컴퓨팅 기술이 교통사고 감소에 미치는 영향에 관한 연구)

  • Young-Gyu Jang;Gyeong-Seok Kim;Hye-Weon Kim;Won-Ho Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • We used actual field data to analyze from a traffic engineering perspective how AI and edge computing technologies affect the reduction of traffic accidents. By providing object information from 20m behind with AI object recognition, the driver secures a response time of about 3.6 seconds, and with edge technology, information is displayed in 0.5 to 0.8 seconds, giving the driver time to respond to intersection situations. In addition, it was analyzed that stopping before entering the intersection is possible when speed is controlled at 11-12km at the 10m point of the intersection approach and 20km/h at the 20m point. As a result, it was shown that traffic accidents can be reduced when the high object recognition rate of AI technology, provision of real-time information by edge technology, and the appropriate speed management at intersection approaches are executed simultaneously.

Development of a Real-time Action Recognition-Based Child Behavior Analysis Service System (실시간 행동인식 기반 아동 행동분석 서비스 시스템 개발)

  • Chimin Oh;Seonwoo Kim;Jeongmin Park;Injang Jo;Jaein Kim;Chilwoo Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.68-84
    • /
    • 2024
  • This paper describes the development of a system and algorithms for high-quality welfare services by recognizing behavior development indicators (activity, sociability, danger) in children aged 0 to 2 years old using action recognition technology. Action recognition targeted 11 behaviors from lying down in 0-year-olds to jumping in 2-year-olds, using data directly obtained from actual videos provided for research purposes by three nurseries in the Gwangju and Jeonnam regions. A dataset of 1,867 actions from 425 clip videos was built for these 11 behaviors, achieving an average recognition accuracy of 97.4%. Additionally, for real-world application, the Edge Video Analyzer (EVA), a behavior analysis device, was developed and implemented with a region-specific random frame selection-based PoseC3D algorithm, capable of recognizing actions in real-time for up to 30 people in four-channel videos. The developed system was installed in three nurseries, tested by ten childcare teachers over a month, and evaluated through surveys, resulting in a perceived accuracy of 91 points and a service satisfaction score of 94 points.

Diagnosis of Nitrogen Content in the Leaves of Apple Tree Using Spectral Imagery (분광 영상을 이용한 사과나무 잎의 질소 영양 상태 진단)

  • Jang, Si Hyeong;Cho, Jung Gun;Han, Jeom Hwa;Jeong, Jae Hoon;Lee, Seul Ki;Lee, Dong Yong;Lee, Kwang Sik
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2022
  • The objective of this study was to estimated nitrogen content and chlorophyll using RGB, Hyperspectral sensors to diagnose of nitrogen nutrition in apple tree leaves. Spectral data were acquired through image processing after shooting with high resolution RGB and hyperspectral sensor for two-year-old 'Hongro/M.9' apple. Growth data measured chlorophyll and leaf nitrogen content (LNC) immediately after shooting. The growth model was developed by using regression analysis (simple, multi, partial least squared) with growth data (chlorophyll, LNC) and spectral data (SPAD meter, color vegetation index, wavelength). As a result, chlorophyll and LNC showed a statistically significant difference according to nitrogen fertilizer level regardless of date. Leaf color became pale as the nutrients in the leaf were transferred to the fruit as over time. RGB sensor showed a statistically significant difference at the red wavelength regardless of the date. Also hyperspectral sensor showed a spectral difference depend on nitrogen fertilizer level for non-visible wavelength than visible wavelength at June 10th and July 14th. The estimation model performance of chlorophyll, LNC showed Partial least squared regression using hyperspectral data better than Simple and multiple linear regression using RGB data (Chlorophyll R2: 81%, LNC: 81%). The reason is that hyperspectral sensor has a narrow Full Half at Width Maximum (FWHM) and broad wavelength range (400-1,000 nm), so it is thought that the spectral analysis of crop was possible due to stress cause by nitrogen deficiency. In future study, it is thought that it will contribute to development of high quality and stable fruit production technology by diagnosis model of physiology and pest for all growth stage of tree using hyperspectral imagery.

Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir (센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선)

  • Kim, Jongmin;Lee, Sang Ung;Kwon, Siyoon;Chung, Se Woong;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.931-939
    • /
    • 2022
  • In Korea, about two-thirds of the precipitation is concentrated in the summer season, so the problem of turbidity in the summer flood season varies from year to year. Concentrated rainfall due to abnormal rainfall and extreme weather is on the rise. The inflow of turbidity caused a sudden increase in turbidity in the water, causing a problem of turbidity in the dam reservoir. In particular, in Korea, where rivers and dam reservoirs are used for most of the annual average water consumption, if turbidity problems are prolonged, social and environmental problems such as agriculture, industry, and aquatic ecosystems in downstream areas will occur. In order to cope with such turbidity prediction, research on turbidity modeling is being actively conducted. Flow rate, water temperature, and SS data are required to model turbid water. To this end, the national measurement network measures turbidity by measuring SS in rivers and dam reservoirs, but there is a limitation in that the data resolution is low due to insufficient facilities. However, there is an unmeasured period depending on each dam and weather conditions. As a sensor for measuring turbidity, there are Optical Backscatter Sensor (OBS) and YSI, and a sensor for measuring SS uses equipment such as Laser In-Situ Scattering and Transmissometry (LISST). However, in the case of such a high-tech sensor, there is a limit due to the stability of the equipment. Therefore, there is an unmeasured period through analysis based on the acquired flow rate, water temperature, SS, and turbidity data, so it is necessary to develop a relational expression to calculate the SS used for the input data. In this study, the AEM3D model used in the Water Resources Corporation SURIAN system was used to improve the accuracy of prediction of turbidity through the turbidity-SS relationship developed based on the measurement data near the dam outlet.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.