본 연구에서는 한국어 의미 표상 자원 구축과 의미 파싱 성능 향상을 위한 데이터 자동 증강 방법을 제안하고 수동 구축 결과 대비 자동 변환 정확도를 보인다. 지도 학습 기반의 AMR 파싱 모델이 유의미한 성능에 도달하려면 대량의 주석 데이터가 반드시 필요하다. 본 연구에서는 기성 언어 분석 기술 또는 기존에 구축된 말뭉치의 주석 정보를 바탕으로 Semi-AMR 데이터를 변환해내는 알고리즘을 제시하며, 자동 변환 결과는 Gold-standard 데이터에 대해 Smatch F1 0.46의 일치도를 보였다. 일정 수준 이상의 정확도를 보이는 자동 증강 데이터는 주석 프로젝트에 소요되는 비용을 경감시키는 데에 활용될 수 있다.
데이터의 품질과 다양성은 모델 성능에 지대한 영향을 끼친다. 본 연구에서는 Topic을 활용한 데이터 전처리와 BERT 기반 MLM, T5, Random Masking을 이용한 증강으로 데이터의 품질과 다양성을 높이고자 했으며, 이를 KoBERT 기반 에세이 자동 평가 모델에 적용했다. 데이터 전처리만 진행했을 때, Quadratic Weighted Kappa Score(QWK)를 기준으로 모델이 에세이의 모든 평가 항목에 대해 베이스라인보다 더욱 높은 일치도를 보였으며 평가항목별 일치도의 평균을 기준으로 0.5368029에서 0.5483064(+0.0115035)로 상승했다. 여기에 제안하는 증강 방식을 추가 할 경우 MLM, T5, Random Masking 모두 성능 향상 효과를 보였다. 특히, MLM 데이터 증강 방식을 추가로 적용하였을 때 최종적으로 0.5483064에서 0.55151645(+0.00321005)으로 상승해 가장 높은 일치도를 보였으며, 에세이 총점으로 QWK를 기준으로 성능을 평가하면 베이스라인 대비 0.4110809에서 0.4380132(+0.0269323)로의 성능 개선이 있었다.
디비피디아 온톨로지는 위키피디아에서 구조화된 데이터를 추출한 지식 베이스이다. 이러한 지식 베이스의 자동 증강은 웹을 구조화하는 속도를 증가시키는데 큰기여를 할 수 있다. 본 연구에서는 한국어 디비피디아를 기반으로 새로운 트리플을 입력받아 기존의 지식 베이스를 자동 증강시키는 시스템을 소개한다. 스키마를 자동 증강하는 두 가지 알고리즘은 최하위 레벨인 인스턴스가 지닌 프로퍼티, 즉 rdf-triple 단위에서 진행되었다. 알고리즘을 사용한 결과 첫째, 확률적 격상 방법을 통해 단계별로 입력받는 인스턴스와 하위 클래스의 프로퍼티를 이용하여 상위 클래스의 스키마가 정교해졌다. 둘째, 이를 바탕으로 타입 분류가 되어 있지 않았던 인스턴스들이 가장 가까운 타입에 자동 분류되었다. 지식 베이스가 정교해지면서 재분류된 인스턴스와 새로운 트리플셋을 바탕으로 두 가지 알고리즘은 반복적으로 작동하며, 한국어 디비피디아 지식 베이스의 자동 증강을 이루었다.
본 연구에서는 DECO(Dictionnaire Electronique du COreen) 한국어 전자사전과 LGG(Local-Grammar Graph)에 기반한 반자동 언어데이터 증강(Semi-automatic Symbolic Propagation: SSP) 방식에 입각하여, 핀테크 분야의 CS(Customer Service) 챗봇 NLU(Natural Language Understanding)을 위한 주석 학습 데이터를 효과적으로 생성하고, 이를 기반으로 RASA 오픈 소스에서 제공하는 DIET(Dual Intent and Entity Transformer) 아키텍처를 활용하여 핀테크 CS 챗봇 NLU 시스템을 구현하였다. 실 데이터을 통해 확인된 핀테크 분야의 32가지의 토픽 유형 및 38가지의 핵심 이벤트와 10가지 담화소 구성에 따라, DECO-LGG 데이터 생성 모듈은 질의 및 불만 화행에 대한 양질의 주석 학습 데이터를 효과적으로 생성하며, 이를 의도 분류 및 Slot-filling을 위한 개체명 인식을 종합적으로 처리하는 End to End 방식의 멀티태스크 트랜스포머 모델 DIET로 학습함으로써 DIET-only F1-score 0.931(Intent)/0.865(Slot/Entity), DIET+KoBERT F1-score 0.951(Intent)/0.901(Slot/Entity)의 성능을 확인하였으며, DECO-LGG 기반의 SSP 생성 데이터의 학습 데이터로서의 효과성과 함께 KoBERT에 기반한 DIET 모델 성능의 우수성을 입증하였다.
본 논문에서는 서술형 수학 문제의 자동 풀이 기술 개발을 위한 데이터 증강 기법인 MOO 를 제안한다. 서술형 수학 문제는 일상에서의 상황을 수학적으로 기술한 자연어 문제로, 인공지능 모델로 이 문제를 풀이하는 기술은 활용 가능성이 높아 국내외에서 다양하게 연구되고 있으나 데이터의 부족으로 인해 성능 향상에서의 한계가 늘 존재해 왔다. 본 논문은 이를 해결하기 위해 시중의 수학 문제들을 수집하여 템플릿을 구축하고, 템플릿에 적합한 풀이계획을 생성할 수 있는 중간 언어인 MOOLang 을 통해 생성된 문제에 대응하는 Python 코드 형태의 풀이와 정답을 생성할 수 있는 데이터 증강 방법을 고안하였다. 이 기법을 통해 생성된 데이터로 기존의 최고 성능 모델인 KoEPT를 통해 학습을 시도해본 결과, 생성된 데이터셋을 통해 모델이 원활하게 데이터셋의 분포를 학습할 수 있다는 것을 확인하였다.
이커머스 리뷰와 같은 특정 도메인의 경우, 텍스트 표현벡터 학습을 위한 양질의 오픈 학습 데이터를 구하기 어렵다. 또한 사람이 수동으로 검수하며 학습데이터를 만드는 경우, 많은 시간과 비용을 소모하게 된다. 따라서 본 논문에서는 수동으로 검수된 데이터없이 양질의 텍스트 표현벡터를 만들 수 있도록 두 단계의 대조 학습 시스템을 제안한다. 이 두 단계 대조 학습 시스템은 레이블링 된 학습데이터가 필요하지 않은 자기지도 학습 단계와 리뷰의 특성을 고려한 자동 레이블링 기반의 지도 학습 단계로 구성된다. 또한 노이즈에 강한 오류함수와 한국어에 유효한 데이터 증강 기법을 적용한다. 그 결과 스피어먼 상관 계수 기반의 성능 평가를 통해, 베이스 모델과 비교하여 성능을 14.03 향상하였다.
본 연구는 한국어 자질 기반 감성분석(Feature-based Sentiment Analysis: FbSA)을 위한 대규모의 학습데이터 구축에 있어 반자동 언어데이터 증강 기법(SSP: Semi-automatic Symbolic Propagation)에 입각한 자질-감성 주석 데이터셋 FeSAD(Feature-Sentiment-Annotated Dataset)의 개발 과정과 성능 평가를 소개하는 것을 목표로 한다. FeSAD는 언어자원을 활용한 SSP 1단계 주석 이후, 작업자의 주석이 2단계에서 이루어지는 2-STEP 주석 과정을 통해 구축된다. SSP 주석을 위한 언어자원에는 부분 문법 그래프(Local Grammar Graph: LGG) 스키마와 한국어 기계가독형 전자사전 DECO(Dictionnaire Electronique du COréen)가 활용되며, 본 연구에서는 7개의 도메인(코스메틱, IT제품, 패션/의류, 푸드/배달음식, 가구/인테리어, 핀테크앱, KPOP)에 대해, 오피니언 트리플이 주석된 FeSAD 데이터셋을 구축하는 프로세싱을 소개하였다. 코스메틱(COS)과 푸드/배달음식(FOO) 두 도메인에 대해, 언어자원을 활용한 1단계 SSP 주석 성능을 평가한 결과, 각각 F1-score 0.93과 0.90의 성능을 보였으며, 이를 통해 FbSA용 학습데이터 주석을 위한 작업자의 작업이 기존 작업의 10% 이하의 비중으로 감소함으로써, 학습데이터 구축을 위한 프로세싱의 소요시간과 품질이 획기적으로 개선될 수 있음을 확인하였다.
온라인상에서 발생하는 혐오 표현은 사회가 직면한 주요 문제 중 하나이다. 이러한 필요성에 입각해, 최근 인공지능을 활용하여 발화에 대한 교화 목적을 가진 대응 발화 쌍을 통해 혐오 표현에 대한 실질적인 완화를 진행하는 연구들이 생겨나고 있다. 그러나 각 혐오 표현에 적합한 대응 발화의 구축은 다수의 전문 인력이 요구되므로 데이터를 구축함에 있어 시간과 비용이 많이 소요되며 대응 발화 생성 또한 어려운 문제로 여겨진다. 해당 문제를 완화하기위해, 본 논문은 사전에 기 구축되어 있는 혐오 표현 데이터를 기반으로 의미 기반 검색을 적용하여 자동으로 데이터를 증강할 수 있는 쉽고 빠른 데이터 증강 방법론을 제안한다. 제안하는 프로세스의 타당성과 증강된 문장의 효과를 검증하기 위해 사전학습 모델을 기반으로 비교 실험을 진행하였다. 실험 결과, 제안하는 프로세스를 적용하였을 시, 그렇지 않은 모델 대비 높은 폭의 성능 향상을 보였다.
많은 양의 데이터는 딥 러닝 모델의 견고성을 향상시키고 과적합 문제를 방지할 수 있게 해준다. 자동 혀 분할에서, 혀 영상 데이터 세트를 실제로 수집하고 라벨링하는 데에는 많은 어려움이 수반되므로 많은 양의 혀 영상 데이터를 사용하기 쉽지 않다. 데이터 증강은 새로운 데이터를 수집하지 않고 레이블 보존 변환을 사용하여 학습 데이터 세트를 확장하고 학습 데이터의 다양성을 증가시킬 수 있다. 이 논문에서는 이미지 자르기, 회전, 뒤집기, 색상 변환과 같은 7 가지 데이터 증강 방법을 사용하여 확장된 혀 영상 학습 데이터 세트를 생성하였다. 데이터 증강 방법의 성능을 확인하기 위하여 InceptionV3, EfficientNet, ResNet, DenseNet 등과 같은 전이 학습 모델을 사용하였다. 실험 결과 데이터 증강 방법을 적용함으로써 혀 분할의 정확도를 5~20% 향상시켰으며 기하학적 변환이 색상 변환보다 더 많은 성능 향상을 가져올 수 있음을 보여주었다. 또한 기하학적 변환 및 색상 변환을 임의로 선형 조합한 방법이 다른 데이터 증강 방법보다 우수한 분할 성능을 제공하여 InveptionV3 모델을 사용한 경우에 94.98 %의 정확도를 보였다.
현재 대부분의 국내 학술 데이터 베이스는 개별 학술지 논문의 주제를 파악하는 표준화된 정보를 거의 제공하지 않고 있다. 본 연구에서는 논문의 제목만을 활용하여 학술 논문의 분야를 자동으로 분류하는 방법을 제안한다. 이를 위해 한국어로 사전 훈련된 KLUE-RoBERTa 모델을 사용하며, Back Translation 과 Chat-GPT 를 활용한 데이터 증강을 통해 모델의 성능을 향상한다. 연구 결과, Back Translation 과 Chat-GPT 를 사용하여 증강한 모델이 원본 데이터를 학습한 모델보다 약 11%의 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.