• Title/Summary/Keyword: 데이터 융합 관리

Search Result 923, Processing Time 0.033 seconds

A Smart Monitoring Management System Architecture Design for Modular Data Center Infra (모듈러 데이터센터 인프라를 위한 스마트 모니터링 관리 시스템 구조 설계)

  • Lee, Woo Seung;Kim, Hyun Woo;Lee, Young Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.26-29
    • /
    • 2013
  • 클라우드 컴퓨팅 및 빅데이터 환경에서 최근 데이터의 유동량은 폭발적으로 증가하였다. 그에 따라 대규모 IT자원 및 서비스 제공을 위한 핵심 인프라 역할을 맡고 있는 데이터센터의 수요가 급증하고 있는 추세이다. 하지만, 데이터센터의 빠른 확장 속도에 비하여 데이터센터를 통합적, 효율적으로 관리하고 모니터링 할 수 있는 시스템의 부재로 데이터센터의 빠른 유지보수, 효율적 자원관리와 고신뢰 시스템 구축이 어려운 실정이다. 또한 국내 여건상 외국의 사례와 같이 넓은 부지를 사용하여 데이터센터를 구축할 수가 없기 때문에 모듈 형태의 데이터센터 구축 연구가 절실한 상황이다. 본 논문에서는 이러한 폭발적 데이터 환경과 국내 여건을 고려한 효율적인 인프라 지원을 위한 모듈러 데이터 센터의 스마트 모니터링 관리 시스템 구조를 설계한다.

정형화 수준에 따른 의료 데이터 분류 및 분석

  • Lee, Mi-Yeon;Park, Ye-Seul;Kim, Myeong-Hui;Lee, Jeong-Won
    • Information and Communications Magazine
    • /
    • v.31 no.12
    • /
    • pp.57-63
    • /
    • 2014
  • 최근 빅 데이터가 중요한 이슈로 부상하면서, 의료 분야에서의 빅 데이터 관리 및 활용에 대한 요구도 급증하고 있다. 하지만 의료 분야의 데이터는 데이터 자체의 특성과 의료 분야의 특수성으로 인해 다른 분야의 일반적인 빅 데이터와는 차별점이 많다. 따라서 의료 분야에서는 데이터 분석에 앞서 다양한 종류와 형태의 의료 데이터를 의미적으로 융합할 수 있는 방법이 전제되어야 한다. 본 고에서는 우선 의료 관련 데이터에 대한 기술(description) 표준 동향을 소개한다. 더불어 다각도의 기준에 따라 의료 데이터를 분류해봄으로써 그 다양성을 확인하고, 의료 데이터 융합의 필요성을 강조함으로써 의료 데이터 관리기술의 나아갈 방향을 제시하고자 한다.

Construction of Web-Based Medical Imgage Standard Dataset Conversion and Management System (웹기반 의료영상 표준 데이터셋 변환 및 관리 시스템 구축)

  • Kim, Ji-Eon;Lim, Dong Wook;Yu, Yeong Ju;Noh, Si-Hyeong;Lee, ChungSub;Kim, Tae-Hoon;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.282-284
    • /
    • 2021
  • 최근 4차 산업혁명으로 의료빅데이터 기반으로 한 AI 기술이 급속도로 발전하고 있다. 특히, 의료영상을 기반으로 병변을 탐색, 분활 및 정량화 그리고 자동진단 및 예측 관련된 기술이 AI 제품으로 출시되고 있다. AI 기술개발은 많은 학습데이터가 요구되며, 임상검증에 단일기관에서 2개 이상 기관의 검증이 요구되고 있다. 그러나 아직까지도 단일기관에서 학습용 데이터와 테스트, 검증용 데이터를 달리하여 기술개발에 활용하고 있다. 본 논문은 AI 기술개발에 필요한 영상데이터에 대한 표준화된 데이터셋 변환 및 관리를 위한 시스템에 대해 기술한다. 다기관 데이터를 수집하기 위해서는 각 기관의 의료영상 데이터 수집 및 저장하는 기준이 명확하지 않아 표준화 작업이 필요하다. 제안한 시스템은 기관 또는 다기관 연구 그룹의 의료영상데이터를 표준화하여 저장할 수 있을 뿐만 아니라 의료영상 뷰어 및 의료영상 리스트를 통해 연구자가 원하는 의료영상 데이터 셋을 검색하여 다양한 데이터셋으로 제공할 수 있기 때문에 수집 및 변환 그리고 관리까지 지원할 수 있는 시스템으로 영상기반의 머신러닝 연구에 활력을 불어넣을 수 있을 것으로 기대하고 있다.

Construction of Medical Image-Based Learning Data Support Platform for Machine Learning and Its Application of Sarcopenia Data AI (머신러닝을 위한 의료영상기반 학습 데이터 지원 플랫폼 구축 및 근감소증 데이터 AI 응용)

  • Kim, Ji-Eon;Lim, Dong Wook;Yu, Yeong Ju;Noh, Si-Hyeong;Lee, ChungSub;Kim, Tae-Hoon;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.434-436
    • /
    • 2021
  • 의료산업은 진단 및 치료 위주의 기술개발이 진행되어왔다. 최근 의료 빅데이터를 기반으로 진단, 치료 및 재활뿐만 아니라 예방과 예후관리까지 지원하는 의료서비스에 대한 패러다임이 변화되고 있다. 특히, 여러 의료 중심의 플랫폼 기술 가운데 객관적인 진단지표를 가지고 있는 의료영상을 기반으로 인공지능 학습에 적용하여 진단 및 예측을 중심으로 한 플랫폼 개발이 진행되고 있다. 하지만, 인공지능 연구에는 많은 학습 데이터가 요구될 뿐만 아니라 학습에 적용하기 위해서는 데이터 특성에 따른 전처리 기술과 분류 작업에 많은 시간 소요되어 이와 같은 문제점을 해결할 수 있는 방법들이 요구되고 있다. 따라서, 본 논문은 인공지능 학습까지 적용하기 위한 의료영상 데이터에 대한 확장 모델을 개발하여 공통적인 조건에 따라 의료영상 데이터가 표준화되어 변환하며, 자동화 시스템 구조에 따라 데이터가 분류·저장되어 인공지능 학습까지 지원할 수 있는 플랫폼을 제안하고자 한다. 그리고 근감소증 학습데이터 관리 및 적용 결과를 통해 플랫폼의 수행성을 검증하였다. 향후 제안한 플랫폼을 통해 의료데이터에 대한 전처리, 분류, 관리까지 지원함으로써 CDM 확장 표준 의료데이터 플랫폼으로 활용 가능성을 보였다.

Medical Dataset Management System for Multi-Center Clinical Research (다기관 임상연구를 위한 의료 데이터 셋 관리 시스템)

  • lee, Chung-Sub;Kim, Seung-Jin;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.16-19
    • /
    • 2020
  • 본 논문은 국제표준화인 OHDSI OMOP-CDM 의 확장으로 의료영상 표준기반의 R_CDM 으로 변환하고 그 데이터를 기반으로 다기관 임상연구를 위한 관리시스템에 대해 기술한다. 이를 위해 기존 공통데이터모델과 연계에 중점을 두어 DICOM 태그정보를 기반으로 의료영상 표준 모델의 스키마와 다기관 연구를 위한 Report 정보를 포함하여 모델링하였다. 이를 기반으로 머신러닝 기술개발을 위한 데이터 셋 생성과 관리를 위한 웹 기반 시스템 구조와 기능에 대해서 기술한다. 끝으로 구현된 시스템에서 제공하는 웹 서비스 수행 결과를 보인다.

The System of Converged u-GIS Data Processing (u-GIS 융합데이터 처리 시스템)

  • Jang, In-Sung;Kim, Min-Soo;Kim, Ju-wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.584-587
    • /
    • 2009
  • 전통적으로 지리정보시스템은 지형데이터와 속성데이터가 결합된 정적인 공간정보를 처리한다. 기존 지리정보시스템을 발전시켜, 시간에 따라 위치 및 기하데이터가 변화는 동적인 시공간데이터에 연구가 한동안 진행되어 왔다. 최근 들어 유비쿼터스 컴퓨팅 환경에 대한 관심이 집중되면서, 센싱 데이터와 같이 속성데이터가 동적으로 계속 변화는 데이터가 급증하고 있고, 센서노드의 위치가 고정 또는 이동함에 따라 공간정보와 결합하여 관리될 필요성이 급증하고 있다. 이에 본 논문에서는 USN기술와 GIS기술을 융합하여 GeoSensor 정보를 효과적으로 관리할 수 있는 u-GIS 융합데이터 처리 시스템을 제안하고자 한다.

  • PDF

Design of Facility Crack Detection Model using Transfer Learning (전이학습을 활용한 시설물 균열 탐지 모델 설계)

  • Kim, Jun-Yeong;Park, Jun;Park, Sung Wook;Lee, Han-Sung;Jung, Se-Hoon;Sim, Cun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.827-829
    • /
    • 2021
  • 현대사회의 시설물 중 다수가 콘크리트를 사용하여 건설되었고, 재료적 성질로 인해 균열, 박락, 백태 등의 손상이 발생하고 있고 시설물 관리가 요구되고 있다. 하지만, 현재 시설물 관리는 사람의 육안 점검을 정기적으로 수행하고 있으나, 높은 시설물이나 맨눈으로 확인할 수 없는 시설물의 경우 관리가 어렵다. 이에 본 논문에서는 다양한 영상장비를 활용해 시설물의 이미지에서 균열을 분류하는 알고리즘을 제안한다. 균열 분류 알고리즘은 산업 이상 감지 데이터 세트인 MVTec AD 데이터 세트를 사전 학습하고 L2 auto-encoder를 사용하여 균열을 분류한다. MVTec AD 데이터 세트를 사전학습시킴으로써 균열, 박락, 백태 등의 특징을 학습시킬 수 있을 것으로 기대한다.

The Development of u-GIS Spatial Database Management System (u-GIS 공간 데이터베이스 관리시스템 개발)

  • Min, Kyoung-Wook;Kim, Ju-Wan
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.215-217
    • /
    • 2009
  • u-GIS는 기존 정적인 공간데이터와 동적인 GeoSensor 데이터를 융합하여 처리하는 시스템을 말한다. 기존 정적인 공간 데이터는 주로 2차원 공간 데이터였으며 최근 유비쿼터스 환경에서는 이를 확장한 3차원 공간 데이터 및 다차원 시공간 데이터의 요구가 급증하고 있다. 최근 국가 차원에서 3차원 공간 데이터를 구축하고 있으며 DBMS가 아닌 파일 단위로 데이터를 저장하고 관리하고 있다. 이 경우, 데이터의 중복 저장, 표준 인터페이스의 부재, 서버 중심의 데이터 제공의 어려움 등의 문제가 발생한다. 따라서 본 연구에서는 3차원 공간데이터를 효과적으로 저장 관리하기 위하여 3차원 공간 DBMS를 연구 개발하였다.

  • PDF

The effect of prioritizing big data in managerial accounting decision making (관리회계 의사결정에 있어 빅 데이터 우선순위 설정의 효과)

  • Kim, Kyung-Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.10-16
    • /
    • 2021
  • As the implementation of smart factories spreads widely, the need for research to improve data efficiency is raised by prioritizing massive amounts of big data using IoT devices in terms of relevance and quality. The purpose of this study is to investigate whether prioritizing big data in management accounting decisions such as cost volatility estimation and recipe optimization can improve smart solution performance and decision-making effectiveness. Based on the survey answers of 84 decision makers at domestic small and medium-sized manufacturers who operate smart solutions such as ERP and MES that link manufacturing data in real time, empirical research was conducted. As a result, it was analyzed that setting prioritization of big data has a positive effect on decision-making in management accounting. became In addition, it was found that big data prioritization has a mediating effect that indirectly affects smart solution performance by using big data in management accounting decision making. Through the research results, it will be possible to contribute as a prior research to develop a scale to evaluate the correlation between big data in the process of business decision making.

A Study on the Efficiency of Imbalanced Data Processing Techniques for Exercise Prediction in COPD Patients (COPD 환자 운동 예측을 위한 불균형 데이터 처리 기법의 효율성에 관한 연구)

  • Hyeonseok Jin;Sehyun Cho;Jayun Choi;Kyungbaek Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.652-655
    • /
    • 2024
  • COPD(Chronic Obstructive Pulmonary Disease)는 장기간에 걸쳐 기도가 좁아지는 폐질환으로, 규칙적 운동은 호흡을 용이하게 하고 증상을 개선할 수 있는 주요 자가관리 중재법 중 하나이다. 건강정보 데이터와 인공지능을 사용하여 규직적 운동 이행군과 불이행군을 선별하여 자가관리 취약 집단을 파악하는 것은 질병관리 측면에서 비용효과적인 전략이다. 하지만 많은 양의 데이터를 확보하기 어렵고, 규칙적 운동군과 그렇지 않은 환자의 비율이 상이하기 때문에 인공지능 모델의 전체적인 선별 능력을 향상시키기 어렵다는 한계가 있다. 이러한 한계를 극복하기 위해 본 연구에서는 국민건강영양조사 데이터를 사용하여 머신러닝 모델인 XGBoost와 딥러닝 모델인 MLP에 오버샘플링, 언더샘플링, 가중치 부여 등 불균형 데이터 처리 기법을 적용 후 성능을 비교하여 가장 효과적인 불균형 데이터 처리 기법을 제시한다.