사물 인터넷(IoT) 환경은 지속가능한 제품의 제조 및 운용, 그리고 IoT 기술을 활용한 제품 생애주기 관리를 통해 재활용 단계에서 환경적 피해 영향을 줄이고 자원을 효율적으로 활용하는 데 도움을 줄 수 있다. 이러한 사회환경을 기반으로 본 연구에서는 기존 연구문헌을 통해 환경보호적 가치, 경제적 가치, 사회적 가치를 포함한 지속가능한 패션제품의 공감가치를 분석하고 공감가치와 제품에 대한 호감도 및 구매의사와의 관계를 검증하였다. 관계 검증을 위해 연구가설을 설정하고 설문지를 작성한 후 조사하였다. 조사 대상자는 가능한 패션제품을 구매한 경험이 있는 중국 광동성(廣東省) 광저우시(廣州市)에 거주하는 여대생을 대상으로 온라인 설문조사를 실시하였다. 조사 기간은 2023년 8월 10일부터 8월 20일간에 실시하였으며, 총 352건의 설문지를 배포하였다. 회수된 설문지 중 데이터 분석에 유효한 총 313부를 분석에 사용하였다. 수집된 설문자료는 SPSS 26.0 소프트웨어를 이용하여 빈도분석, 탐색적 요인 분석, 신뢰도 및 타당성 분석, 상관관계 분석 및 다중 회귀 분석을 실시하였다. 분석 결과는 다음과 같다. 첫째, 가능한 패션제품의 공감가치는 환경보호적 가치, 경제적 가치 그리고 사회적 가치로 분류되었다. 둘째, 가능한 패션제품의 경제적 가치와 사회적 가치는 호감도에 긍정적인 영향을 미치는 것으로 나타났다. 셋째, 가능한 패션제품의 환경보호적 가치와 사회적 가치는 구매의사에 긍정적인 영향을 미치는 것으로 나타났다. 넷째, 가능한 패션제품에 대한 중국 여대생들의 호감도는 구매의사에 긍정적인 영향을 미치는 것으로 나타났다. 이러한 결과로 볼 때 소비자들의 가능한 패션제품 구매를 촉진하기 위해 기업들은 제품의 환경보호적 가치, 경제적 가치, 사회적 가치 등의 특성을 강조할 필요가 있다고 판단된다. 본 연구의 목적은 공감가치, 호감도, 구매의사의 관계를 분석함으로써 지속가능한 패션 관련 산업 및 기업에 유용한 기본 데이터 그리고 개발 아이디어와 방법을 제공하여 나아가 가능한 패션제품의 마케팅 전략 개발에 도움을 주고자 한다.
최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.
전통적으로 신문 매체는 국내외에서 발생하는 사건들을 살피는 데에 가장 적합한 매체이다. 최근에는 정보통신 기술의 발달로 온라인 뉴스 매체가 다양하게 등장하면서 주변에서 일어나는 사건들에 대한 보도가 크게 증가하였고, 이것은 독자들에게 많은 양의 정보를 보다 빠르고 편리하게 접할 기회를 제공함과 동시에 감당할 수 없는 많은 양의 정보소비라는 문제점도 제공하고 있다. 본 연구에서는 방대한 양의 뉴스기사로부터 데이터를 추출하여 주요 사건을 감지하고, 사건들 간의 관련성을 판단하여 사건 네트워크를 구축함으로써 독자들에게 현시적이고 요약적인 사건정보를 제공하는 기법을 제안하는 것을 목적으로 한다. 이를 위해 2016년 3월에서 2017년 3월까지의 한국 정치 및 사회 기사를 수집하였고, 전처리과정에서 NPMI와 Word2Vec 기법을 활용하여 고유명사 및 합성명사와 이형동의어 추출의 정확성을 높였다. 그리고 LDA 토픽 모델링을 실시하여 날짜별로 주제 분포를 계산하고 주제 분포의 최고점을 찾아 사건을 탐지하는 데 사용하였다. 또한 사건 네트워크를 구축하기 위해 탐지된 사건들 간의 관련성을 측정을 위하여 두 사건이 같은 뉴스 기사에 동시에 등장할수록 서로 더 연관이 있을 것이라는 가정을 바탕으로 코사인 유사도를 확장하여 관련성 점수를 계산하는데 사용하였다. 최종적으로 각 사건은 각의 정점으로, 그리고 사건 간의 관련성 점수는 정점들을 잇는 간선으로 설정하여 사건 네트워크를 구축하였다. 본 연구에서 제시한 사건 네트워크는 1년간 한국에서 발생했던 정치 및 사회 분야의 주요 사건들이 시간 순으로 정렬되었고, 이와 동시에 특정 사건이 어떤 사건과 관련이 있는지 파악하는데 도움을 주었다. 또한 일련의 사건들의 시발점이 되는 사건이 무엇이었는가도 확인이 가능하였다. 본 연구는 텍스트 전처리 과정에서 다양한 텍스트 마이닝 기법과 새로이 주목받고 있는 Word2vec 기법을 적용하여 봄으로써 기존의 한글 텍스트 분석에서 어려움을 겪고 있었던 고유명사 및 합성명사 추출과 이형동의어의 정확도를 높였다는 것에서 학문적 의의를 찾을 수 있다. 그리고, LDA 토픽 모델링을 활용하기에 방대한 양의 데이터를 쉽게 분석 가능하다는 것과 기존의 사건 탐지에서는 파악하기 어려웠던 사건 간 관련성을 주제 동시출현을 통해 파악할 수 있다는 점에서 기존의 사건 탐지 방법과 차별화된다.
본원에서는 비심장 수술환자의 수술 전후 심장사건의 위험도 평가를 위해 심근관류 SPECT를 시행하고 있다. 암환자의 경우 수술 전에 전신 뼈 검사 혹은 전신 PET 검사로 암 전이 여부 확인 후 심근관류 SPECT를 시행하여 불필요한 검사 처방을 막고 있다. 하지만 단기 병동 입원 환자의 경우 재원 일수를 줄이고자 전신 뼈 검사 후 최소 16시간의 간격을 두고 $^{201}Tl$ 심근관류 SPECT를 시행하는 경우가 있지만 아직까지 서로 다른 동위원소 투여로 인한 crosstalk contamination의 영향에 대한 평가가 제대로 이루어지지 않은 실정이다. 따라서 본 연구에서는 anthropomorphic torso phantom을 이용한 실험과 실제 환자 데이터를 이용하여 이에 대한 유효성 검정을 시행하고자 한다. 2009년 8월부터 9월까지 서울아산병원 핵의학과에서 $^{201}Tl$ 심근관류 SPECT를 시행한 87명의 환자를 대상으로 연구 분석하였다. $^{201}Tl$ 심근관류 SPECT 시행 전날 전신 뼈 스캔 시행 여부에 따라 환자를 분류하였고 $^{201}Tl$ 심근관류 SPECT 촬영 시 이중 에너지 창을 이용하여 영상을 획득하였다. 획득한 영상에서 $^{201}Tl$ 창과 $^{99m}Tc$ 창에서 계수된 카운트의 비율을 전날 전신 뼈 검사의 시행 유무에 따라 비교 분석하였다. 실험에는 anthropomorphic torso phantom을 사용하였으며 심근($^{201}Tl$)과 심근 이외의 부분($^{99m}Tc$)에 각각 14.8 MBq, 44.4 MBq를 투여 하였다. 영상획득은 시간 간격을 두고 게이트 법 적용 없이 $^{201}Tl$ 심근관류 SPECT를 시행하여 얻었고 Xeleris ver 2.0551를 이용하여 공간 분해능을 측정 분석하였다. 수집한 환자 데이터에서 $^{201}Tl$ 창과 $^{99m}Tc$ 창에서 계수된 카운트 비율 비교 결과 전날 전신 뼈 스캔을 시행한 경우 Bone tracer 주입 후 12시간에서 24시간까지의 비율이 Ventri에서는 1:0.411 에서 1:0.114, Infinia에서는 1:0.249에서 1:0.079로 지수함수적으로 감소하며 시간 경과에 따라 유의한 차이(Ventri p=0.0001, Infinia p=0.0001)를 나타내었다. 또한 전신 뼈 스캔을 시행하지 않은 경우의 비율은 Ventri에서 평균 1:$0.067{\pm}0.006$, Infinia에서 1:$0.063{\pm}0.007$로 나타났다. Phantom 실험 후 공간 분해능 측정 결과는 $^{99m}Tc$의 첨가 여부와 시간 경과에 따라서 FWHM의 유의한 변화는 나타나지 않았다 (p=0.134). Anthropomorphic torso phantom을 이용한 실험과 환자 데이터 분석을 통해 bone tracer 주입 16시간 이 후에 시행된$^{201}Tl$ 심근관류 SPECT 영상은 $^{99m}Tc$에 의해 공간 분해능에 유의한 영향을 받지 않는다는 것을 확인하였다. 하지만 이는 영상의 질적 평가만 이루어진 것으로 환자의 피폭과 검사의 정밀도 및 정확도에 관한 연구가 추가로 필요한 실정이다. 추후 서로 다른 동위원소 사용에 따른 crosstalk contamination의 영향에 대한 정확하고 표준화된 유효성 검정으로 검사 간격에 대한 정확한 가이드라인 제시가 이루어져야 할 것이다.
본 연구는 현대 사회에서 가장 가치 있는 문화자산이자 한류의 흐름에서 특히 중요한 위치를 차지하는 디지털 음악에 초점을 두었다. 디지털 음악에 대하여 공신력 있는 음원 차트인 '가온 차트'에 진입한 음원들의 73주간 순위 변화를 수집하였으며 유사한 특징을 가지는 패턴들로 분류하였다. 이후 각 순위 변화 패턴으로부터 주목할 만한 특징에 대한 설명적 분석을 수행하였다. 구체적으로 음원에 대한 신뢰도 이슈가 발생하기 이전 기간의 국내 발매된 디지털 음원들로 한정하여 시점을 일치시킨 후 시계열 군집분석을 통해 패턴을 도출하고자 하였다. 데이터 수집과 전처리를 통하여 742건의 중복되지 않는 음원들을 확보하였고, 시계열 순위 변화에 대한 시계열 군집분석 결과 16개의 패턴들이 도출되었다. 이후 도출된 패턴들을 기반으로 '스테디셀러'와 '원 히트 원더'의 두 가지 유형의 대표적인 패턴을 확인하였다. 나아가 두 패턴에 대하여 차트 내에서 음원의 생존 기간과 음원 순위에 관점에서 다섯 가지의 세분화된 패턴으로 분류하였다. 각 패턴들이 가지는 중요한 특징들은 다음과 같다. 원 히트 원더형 패턴에서 아티스트의 슈퍼스타 효과와 편승효과가 강하게 나타났으며, 소비자들의 디지털 음원 선택에 강한 영향을 미친다는 것을 확인하였다. 나아가 스테디셀러형 패턴을 통해서 매우 오랜시간 소비자들의 선택을 받는 음원들을 확인하였고, 소비자의 니즈를 관통하며 가장 많은 선택을 받는 음원들이 오히려 원 히트 원더형 패턴이 아니라 스테디셀러: 중기 패턴에 포진하고 있음을 확인하였다. 특히 주목할 만한 점은 스테디셀러형 패턴을 통해 기존의 패턴과는 상반되는 '차트 역주행' 현상을 확인했다는 것이다. 본 연구는 디지털 음원을 중심으로 상대적으로 소외되었던 분야인 시간의 흐름에 따른 음원의 순위 변화에 초점을 두었고, 음원의 흥행과 순위를 예측하는 것이 아니라 순위 변화의 패턴을 세분화함으로써 음원 연구에 대한 새로운 접근을 시도하였다는 점에서 의의가 있다.
본 연구는 비트코인 가격 변화량에 영향을 미치는 요인에 대한 실증 분석을 수행하였다. 기존 연구들은 암호화폐와 관련해 블록체인 시스템의 보안성, 암호화폐가 불러일으키는 경제적 파급효과 및 법적 시사점, 소비자 수용 및 사용 의도와 사회현상을 중심으로 이루어졌다. 그러나 암호화폐 가격 변화가 급등과 급락을 반복하면서 많은 사회적 문제를 야기했음에도 불구하고 암호화폐의 가격 변화에 영향을 미치는 요인에 대한 실증적 연구는 부족하다. 때문에 본 연구에서 암호화폐 가격 변화에 미치는 영향 요인을 도출하기 위해 암호화폐 중 가장 대표적인 비트코인을 중심으로 분석을 진행하였다. 분석을 위해 소비자, 산업, 거시경제 세 가지 차원에서 가설을 수립, 각 차원의 변수에 대한 시계열 데이터를 수집하였다. 단위근 검정을 통해 시계열 데이터에 대한 가성 회귀를 제거하고 안정성을 검증한 후, 비트코인 가격 변화량에 영향을 미칠 수 있는 요인들에 대한 회귀 분석을 실시하였다. 분석 결과 비트코인 가격 변화량은 비트코인 거래 금지에 대한 검색 트래픽, 미국 달러지수 변화량과는 음의 상관관계를, GPU 벤더의 주가 변화량, 원유 가격 변화량과는 양의 상관관계를 갖는 것을 확인했다. 그 이유로는 비트코인 거래 금지는 비트코인 존폐와 관련해 투자심리에 부정적 영향을 미친 것으로 판단되며, GPU 벤더 주가는 비트코인 생산 단가 증가와 관련해 비트코인 가격에 영향을 미친 것으로 해석된다. 미국 달러지수와는 반대로 움직임으로서 비트코인이 금의 성격을 갖고 있음을 확인하였으며, 원유 가격과의 관계를 통해 원자재와 같은 투자 자산의 역할도 갖고 있음을 확인하였다. 본 연구의 결과를 통해 비트코인이 가진 성격을 규명하였으며, 비트코인 가격 변화 요인에 대한 실증 검증을 통해, 그 동안 부족했던 비트코인 가격 변화 요인을 규명하였고, 해당 요인들을 통해 실무적으로 소비자나 금융기관, 정부 기관에 대해 비트코인에 대한 전략적인 접근방법에 대한 가이드를 제공할 수 있다는 점에서 의의가 있다.
누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.
인터넷이라는 가상 공간을 활용함으로써 물리적 공간의 제약을 갖는 오프라인 쇼핑의 한계를 넘어선 온라인 쇼핑은 다양한 기호를 가진 소비자를 만족시킬 수 있는 수많은 상품을 진열할 수 있게 되었다. 그러나, 이는 역설적으로 소비자가 구매의사결정 과정에서 너무 많은 대안을 비교 평가해야 하는 어려움을 겪게 함으로써 오히려 상품 선택을 방해하는 원인이 되기도 한다. 이런 부작용을 해소하기 위한 노력으로서, 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 구매의사결정 과정 중 정보탐색 및 대안평가에 소요되는 시간과 노력을 줄여주고 이탈을 방지하며 판매자의 매출 증대에 기여할 수 있다. 연관 상품 추천에 사용되는 연관 규칙 마이닝 기법은 통계적 방법을 통해 주문과 같은 거래 데이터로부터 서로 연관성 높은 상품을 효과적으로 발견할 수 있다. 하지만, 이 기법은 거래 건수를 기반으로 하므로, 잠재적으로 판매 가능성이 높을지라도 충분한 거래 건수가 확보되지 못한 상품은 추천 목록에서 누락될 수 있다. 이렇게 추천 시 제외된 상품은 소비자에게 구매될 수 있는 충분한 기회를 확보하지 못할 수 있으며, 또 다시 다른 상품에 비해 상대적으로 낮은 추천 기회를 얻는 악순환을 겪을 수도 있다. 본 연구는 구매의사결정이 결국 상품이 지닌 속성에 대한 사용자의 평가를 기반으로 한다는 점에 착안하여, 추천 시 상품의 속성을 반영하면 소비자가 특정 상품을 선택할 확률을 좀더 정확하게 예측할 수 있다는 점을 추천 시스템에 반영하기 위한 목적으로 수행되었다. 즉, 어떤 상품 페이지를 방문한 소비자는 그 상품이 지닌 속성들에 어느 정도 관심을 보인 것이며 추천 시스템은 이런 속성들을 기반으로 연관성을 지닌 상품을 더 정교하게 찾을 수 있다는 것이다. 상품의 주요 속성의 하나로서, 카테고리는 두 상품 간에 아직 드러나지 않은 잠재적인 연관성을 찾기에 적합한 대상이 될 수 있다고 판단하였다. 본 연구는 연관 상품 추천에 상품 간의 연관성뿐만 아니라 카테고리 간의 연관성을 추가로 반영함으로써 추천의 정확도를 높일 수 있는 예측모형을 개발하였고, 온라인 쇼핑몰로부터 수집된 주문 데이터를 활용하여 이루어진 실험은 기존 모형에 비해 추천 성능이 개선됨을 보였다. 실무적인 관점에서 볼 때, 본 연구는 소비자의 구매 만족도를 향상시키고 판매자의 매출을 증가시키는 데에 기여할 수 있을 것으로 기대된다.
개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.
소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.