Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.255-257
/
1998
이동 통신 서비스의 통화 품빌을 개선하기 위해서는 무선 기지국의 유지.보수가필요하다. 이를 위해서는 기지국 및 단말기의 CDMA 필드 데이터를 측정하여 분석하는 툴을 필요로한다. 본 논문에서는 측정된 CDMA 필드데이처를 벡터지도에 표시하고 분석에 필요한 여러 가지 정보들을 조회할 수 있는 기능과 측정 데이터의 통계 처리 기능을 가지는 분석툴을 개발한다. 이러한 시스템의 설계 및 개발을 위해서 객체 지향 방법론을 사용한다.이러한 분석 툴을 이용함으로써 최적화된 셀설계를 위한 무선기지국의 효율적인 유지.보수가 이루어 질 수 있다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.292-297
/
2020
자연어 추론 모델은 전제와 가설 사이의 의미 관계를 함의와 모순, 중립 세 가지로 판별한다. 영어에서는 RTE(recognizing textual entailment) 데이터셋과 다양한 NLI(Natural Language Inference) 데이터셋이 이러한 모델을 개발하고 평가하기 위한 벤치마크로 공개되어 있다. 본 연구는 국외의 텍스트 추론 데이터 주석 가이드라인 및 함의 데이터를 언어학적으로 분석한 결과와 함의 및 모순 관계에 대한 의미론적 연구의 토대 위에서 한국어 자연어 추론 벤치마크 데이터 구축 방법론을 탐구한다. 함의 및 모순 관계를 주석하기 위하여 각각의 의미 관계와 관련된 언어 현상을 정의하고 가설을 생성하는 방안에 대하여 제시하며 이를 바탕으로 실제 구축될 데이터의 형식과 주석 프로세스에 대해서도 논의한다.
The Journal of the Convergence on Culture Technology
/
v.9
no.6
/
pp.935-940
/
2023
Most text data collected through web scraping for artificial intelligence and big data analysis is generally large and unstructured, so a purification process is required for big data analysis. The process becomes structured data that can be analyzed through a heuristic pre-processing refining step and a post-processing machine refining step. Therefore, in this study, in the post-processing machine refining process, the Korean dictionary and the stopword dictionary are used to extract vocabularies for frequency analysis for word cloud analysis. In this process, "user-defined stopwords" are used to efficiently remove stopwords that were not removed. We propose a methodology for applying the "thesaurus" and examine the pros and cons of the proposed refining method through a case analysis using the "user-defined stop word thesaurus" technique proposed to complement the problems of the existing "stop word dictionary" method with R's word cloud technique. We present comparative verification and suggest the effectiveness of practical application of the proposed methodology.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.184-184
/
2022
지난 2019년 인천시, 서울시 문래동, 포항시 등에서 발생한 수질사고로 인해 국민의 상수도에 대한 신뢰도가 최악의 상황에 있으며, 이후로도 깔따구 유충이 발견되는 등 상수도 관망 내 체계적인 수질 관리 및 빠르고 정확한 수질 사고 발생 지점의 추정이 중요해 지고 있는 실정이다. 오염물 유입 추정은 수리학적 사고로 고려되는 누수와는 달리 상대적으로 그 지점 추정이 어렵다. 대게의 경우 수리해석을 진행하여 유량과 유향을 파악한 뒤 계측 지점에서부터 동일 시간대로 역으로 흐름을 거슬러 올라가며 확률상 높은 지점을 추정하는 것이 일반적인 방법이다. 본 연구에서는 범용 수리해석 프로그램인 EPANET2.2에 내장된 Trace Analysis (이후 trace 분석) 옵션을 사용한 오염물 유입 지점 추정 방법론을 소개한다. 본 연구에서는 방법론의 검증을 위해 오염물 유입지점은 한 곳으로 가정하였다. 해당 방법론은 먼저 절점별 trace 분석을 실시하여 모든 지점에서 수질 관측 지점까지 물이 도달하는데 소요되는 시간을 산정한다. 해당 시간과 오염물 관측 데이터와의 비교를 통해 유입 확률이 높은 지점을 추출한다. 이를 위해 실측 데이터가 필요하며, 결과는 지점별 확률로 나타난다. 모의 결과 1개의 수질 관측 지점으로도 개략적인 지점을 선정할 수 있는 것으로 나타났다. 다만, 수질 관측 지점의 수에 따라 분석 결과의 정확도가 향상한다. 마지막으로 유입 지점 추정 확률이 낮은 경우, 유입 지점 추정 확률을 향상시킬 수 있는 추가 수질 분석 지점을 결정하였다. 본 연구에서 소개한 방법론은 향후 수질 사고 발생 시 최초 확산 방지를 위한 격리 지점 선정에 근거를 제시할 수 있을 것으로 기대하며, 나아가 수질 관측 지점을 결정 및 대응 방안 수립 가이드라인으로 활용할 수 있을 것이다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11c
/
pp.1851-1854
/
2002
일반적으로 고객 관리를 위한 고객 데이터는 운영 시스템 환경 여건상 다양한 분산 데이터베이스 시스템에 저장되어 있다. 이와 같이 분산 저장된 데이터들로부터 고객들의 향후 경향이나 추세 분석 등 의사 결정에 필요한 데이터로 활용하고자 할 때는 데이터베이스에 저장된 대량의 데이터가 고객 분석에 적합한 형태로 구성되어 서비스되어야 한다. 이에 적절한 구조가 데이터 웨어하우스 구조이며, 데이터 웨어하우스는 분산 저장된 각각의 소스들로부터 발생된 변경 정보들을 실시간으로 데이터 웨어하우스에 반영되어야한다. 이렇게 함으로써 정확한 의사 결정을 수행할 수 있게 된다. 이에 본 논문에서는 분산 컴퓨팅 환경에서 고객 관리를 정확하고 효과적으로 이루어질 수 있도록 기본 소스에서 발생된 데이터 변경을 웨어하우스에 실시간으로 전달하여 정확한 데이터를 유지할 수 있는 방법론을 제시하고자 한다. 또한 제시된 방법의 실험 평가 결과를 간략하게 도시하여 나타내었다.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.5
/
pp.470-476
/
2015
Big data has been used in diverse areas. For example, in computer science and sociology, there is a difference in their issues to approach big data, but they have same usage to analyze big data and imply the analysis result. So the meaningful analysis and implication of big data are needed in most areas. Statistics and machine learning provide various methods for big data analysis. In this paper, we study a process for big data analysis, and propose an efficient methodology of entire process from collecting big data to implying the result of big data analysis. In addition, patent documents have the characteristics of big data, we propose an approach to apply big data analysis to patent data, and imply the result of patent big data to build R&D strategy. To illustrate how to use our proposed methodology for real problem, we perform a case study using applied and registered patent documents retrieved from the patent databases in the world.
Journal of the Korea Society of Computer and Information
/
v.19
no.12
/
pp.49-56
/
2014
In this paper, we propose a method for identifying hidden principal sentiments among large scale texts from documents, social data, internet and blogs by analyzing standard language, slangs, argots, abbreviations and emoticons in those words. The IRLBA(Implicitly Restarted Lanczos Bidiagonalization Algorithm) is used for principal component analysis with large scale sparse matrix. The proposed system consists of data acquisition, message analysis, sentiment evaluation, sentiment analysis and integration and result visualization modules. The suggested approaches would help to improve the accuracy and expand the application scope of sentiment analysis in social data.
Independent Component Analysis is a popular statistical method to separate independent signals from the mixed data, and Group Independent Component Analysis is an its multi-subject extension of Independent Component Analysis. It has been applied Functional Magnetic Resonance Imaging data and provides promising results. However, classical Group Independent Component Analysis works poorly when outliers exist on data which is frequently occurred in Magnetic Resonance Imaging scanning. In this study, we propose a robust version of the Group Independent Component Analysis based on ROBPCA. Through the numerical studies, we compare proposed method to the conventional method, and verify the robustness of the proposed method.
Journal of the Korea Society of Computer and Information
/
v.14
no.6
/
pp.135-142
/
2009
Data mining is an emerging area of computational intelligence that offers new theories, techniques, and tools for analysis of large data sets. The major techniques used in data mining are mining association rules, classification and clustering. Since these techniques are used individually, it is necessary to develop the methodology for rule extraction using a process of integrating these techniques. Rule extraction techniques assist humans in analyzing of large data sets and to turn the meaningful information contained in the data sets into successful decision making. This paper proposes an autonomous method of rule extraction using clustering and rough set theory. The experiments are carried out on data sets of UCI KDD archive and present decision rules from the proposed method. These rules can be successfully used for making decisions.
Over the years, cluster analysis has become a popular tool for marketing and segmentation researchers. There are various methods for cluster analysis. Among them, K-means partitioning cluster analysis is the most popular segmentation method. However, because the cluster analysis is very sensitive to the initial configurations of the data set at hand, it becomes an important issue to select an appropriate starting configuration that is comparable with the clustering of the whole data so as to improve the reliability of the clustering results. Many programs for K-mean cluster analysis employ various methods to choose the initial seeds and compute the centroids of clusters. In this paper, we suggest a methodology to evaluate various clustering programs. Furthermore, to explore the usability of the methodology, we evaluate four clustering programs by using the methodology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.