본 논문에서는 LCD 공정관리에서 SPC 시스템의 주요내용 및 운영방법론을 논하고자 한다. 주요내용으로는 실시간 프로세스 모니터링 방법론, 유의차분석 방법론, 이상데이터의 분석, 공정능력의 분석, 관리도 및 결과의 조회 등을 들 수 있다. 또한, TFT-LCD 공정을 크게 Fab 공정인 TFT 공정, LC 공정 및 Module 공정으로 나누어 각 공정에서의 중요한 특성과 관리방법론을 제시하고자 한다.
최근 새롭게 등장하는 핫스팟 지역과 트렌드 중심지는 SNS를 이용하는 골목러(골목 구석구석을 탐색하며 자신 만의 멋집 및 맛집을 찾아 SNS로 공유/홍보하는 사용자)들에 의한 바이럴 효과로 인해 골목 및 블록 등으로 세분화되어 움직이는 현상이 나타나고 있다. 따라서 유의미한 트렌드 중심지(상권 및 핫 플레이스)를 파악함에 있어서, 국가에서 정의하는 상권분석 데이터 및 지하철역, 쇼핑몰 상가 등 대형집객시설과 유동인구수 등의 거시적인 지표만으로는 한계가 있으며, SNS 사용자 데이터를 활용한 면밀한 분석이 필요하다. 본 연구는 사용자에 의해 형성되는 트렌드 중심지 파악을 위해 최근 급부상하는 SNS인 인스타그램 데이터를 활용하여 "소셜 빅 데이터 분석 방법론"을 구축하고 검증하였다. 트렌드 중심지 도출을 위한 빅 데이터 분석 기법으로 국지모란지수법을 활용하여 공간분석 모델을 개발하였고, 개발된 분석 모델을 기반으로 인스타그램 데이터에 대한 공간분석을 수행하였다. 소셜 빅 데이터에 대한 공간분석 결과, 국가 지정의 국내 기존 상권 정보에는 나타나지 않는 "SNS 사용자 데이터 기반의 새로운 트렌드 중심지"가 도출되었다. 본 연구에서 제시된 분석 방법론을 통해, SNS를 활용하여 빠르게 변화하는 최신 트렌드 지역을 보다 명확하게 파악할 수 있으며, 소상공인 및 골목상권 상인들의 창업, 마케팅 등에 활용될 수 있는 유용한 실무 정보를 제공할 수 있을 것이다. 본 연구에서 제안된 분석 방법론은 앞으로 다양한 소셜 빅 데이터 연구에 활용될 수 있을 것이다.
본 연구는 한국 통계청이 수행하는 가계동향조사와 생활시간조사에서 자료처리 과정 및 방법을 혁신하려는 시도로, 기존의 통계 생산 방법론의 한계를 극복하고, 대규모 데이터의 효과적인 관리와 분석을 가능하게 하는 인공지능 기반의 통계 생산을 목표로 한다. 본 연구는 데이터 과학과 통계학의 교차점에서 진행되며, 인공지능 기술, 특히 자연어 처리와 딥러닝을 활용하여 비정형 텍스트 분류 방법의 성능을 검증하며, 인공지능 기반 통계분류 방법론의 확장성과 추가적인 조사 확대 적용의 가능성을 탐구한다. 이 연구의 결과는 통계 데이터의 품질 향상과 신뢰성 증가에 기여하며, 국민의 생활 패턴과 행동에 대한 더 깊고 정확한 이해를 제공한다.
Sequence to sequence(S2S) 기반 음성인식 후처리기를 훈련하기 위한 학습 데이터 구축을 위해 (음성인식 결과(speech recognition sentence), 전사자(phonetic transcriptor)가 수정한 문장(Human post edit sentence))의 병렬 말뭉치가 필요하며 이를 위해 많은 노동력(human-labor)이 소요된다. BackTranScription (BTS)이란 기존 S2S기반 음성인식 후처리기의 한계점을 완화하기 위해 제안된 데이터 구축 방법론이며 Text-To-Speech(TTS)와 Speech-To-Text(STT) 기술을 결합하여 pseudo 병렬 말뭉치를 생성하는 기술을 의미한다. 해당 방법론은 전사자의 역할을 없애고 방대한 양의 학습 데이터를 자동으로 생성할 수 있기에 데이터 구축에 있어서 시간과 비용을 단축 할 수 있다. 본 논문은 BTS를 바탕으로 제주어 도메인에 특화된 음성인식 후처리기의 성능을 향상시키기 위하여 모델 수정(model modification)을 통해 성능을 향상시키는 모델 중심 접근(model-centric) 방법론과 모델 수정 없이 데이터의 양과 질을 고려하여 성능을 향상시키는 데이터 중심 접근(data-centric) 방법론에 대한 비교 분석을 진행하였다. 실험결과 모델 교정없이 데이터 중심 접근 방법론을 적용하는 것이 성능 향상에 더 도움이 됨을 알 수 있었으며 모델 중심 접근 방법론의 부정적 측면 (negative result)에 대해서 분석을 진행하였다.
서비스디자인 분야의 확장에 따라 서비스디자인 대상이 광범위해지면서 상황에 따른 적절한 방법론 선정이 어려워지고 있다. 본 연구에서는 수집된 다양한 데이터를 유형화하는 단계에서 데이터의 특성에 따라 서비스디자이너의 주관이 개입될 확률이 크다는 문제를 해결하기 위해 분석의 정확성을 높이기 위해 벤 다이어그램 활용을 제안하였다. 그 과정에서 기존에 많이 사용되고 있는 $2{\times}2$ 매트릭스 방법론과 벤 다이어그램을 비교하여 $2{\times}2$ 매트릭스의 한계를 지적하고, 보완된 형태의 벤 다이어그램을 3가지로 제안하고 검증하였다.
기업 경쟁력 제고를 위해 빅데이터 분석의 중요성이 대두됨에 따라, 기업의 문제점을 체계적으로 파악하고 이를 해결하여 사업적 가치로 재평가하기 위해서는 통합적 빅데이터 프로젝트 수행 방법이 필요하다. 이에 따라 실무적 활용 용이성을 높이도록 소프트웨어 개발과 프로젝트 관리가 융합된 "과학적 데이터 분석 방법론(SDAD)"를 제안한다. SDAD는 프로젝트 수행 과정을 문제정의, 데이터준비, 모델설계, 모델구현, 결과평가, 서비스구현의 6단계를 구성한 후, 단계별 과업을 공정별(47개)로 세분화하고 산출물(93개)을 도출한다. SDAD 는 기존의 ISP, DW, SW 개발 방법론에서 빅데이터 분석과 관련된 부분을 통합하고 쉽게 결과물을 연동할 수 있도록 하였다. 또한, 다양한 분야의 전문가로 구성된 참여자 간에 의사소통의 효율성을 높이기 위해 RACI 챠트를 통해 공정별 책임자를 할당하는 방법과 표준화된 의사소통 절차를 제시한다. SDAD 방법론은 한국고용정보원에서 수행한 빅데이터 프로젝트에 적용하여 감리의 평가를 받은 결과 적정한 것으로 나타났다.
국내하천은 홍수기에 강수량이 집중되고 하상계수가 높으며 평균경사도도 비교적 큰 특징을 지닌다. 따라서 유량이 빠르게 집중될 수 있는 상황이 빈번하게 발생한다. 이러한 특징을 감안하여 하천의 수질을 관리하기 위해서는 유량과 수질의 상호적인 관계를 규명하는 것이 중요하다. 유량과 수질의 관계를 분석하고 예측하는 방법으로는 물리적 예측모형과 확률론적 예측모형을 이용하는 방법이 있다. 물리적 예측모형을 활용하여 하천의 유량 및 수질을 예측하는 방법은 주어진 지형과 시간의 변화에 따른 유량 및 수질 변화를 예측함으로써 특정 상황에서의 수질 변화를 규명하기에 적절하다. 한편, 풍수기, 갈수기 등 전반적인 유량의 변화에 따라 나타나는 수질변화의 특성을 규명하기 위해서는 수질과 유량 간의 상관관계 분석이 필요하다. 수질과 유량 간의 상관관계를 규명하는 목적일 경우, 물리적 예측모형은 효율성이 낮고, 충분한 데이터 확보가 전제된 상태에서의 확률론적 예측모형은 다각도 분석 및 신뢰성 확보가 가능한 장점이 있다. 그 일환으로 본 연구에서는 확률론적 접근에 기반하여 국내하천에서 수질과 유량 간의 관계를 먼저 분석하고자 한다. 데이터 마이닝 결과, 수질변화에 가장 영향이 큰 인자 및 요인이 추출되며, 이는 효과적인 수질관리 방안을 모색하는 데에 활용될 수 있을 것으로 기대된다.
본 연구는 현대 사회에서 빅데이터의 중요성이 강조되는 가운데, 온라인 시장의 확장과 소비자들의 다양한 소비 행태 변화를 반영한 가격지표 개발을 목표로 한다. 통계청의 기존 통계조사 방법론에 대한 한계를 극복하고, 온라인 쇼핑몰 데이터에서 필요한 정보를 추출하고 가공하기 위해 대규모 언어 모델(LLM)을 활용한 인공지능 기술을 적용해보고자 한다. 초기 연구 결과로 공개 Polyglot을 활용하여 비정형 자료 처리와 품목분류에 응용해 보았으며, 제한된 학습 데이터를 사용하여도 높은 정확도의 처리 결과를 얻을 수 있었으며, 현재는 적용 품목을 확장하여 더욱 다양한 품목에 방법론을 적용하는 연구를 진행 중이다.
본 논문에서는 데이터의 전처리과정으로 SNMP MIB 데이터에 대한 속성 부분집합의 선택 방법(attribute subset selection)을 사용하여 특징선택 및 축소(feature selection & reduction)를 실시하였다. 또한 데이터 마이닝의 대표적인 해석학적 분석 모델인 연관관계규칙기법(association rule mining)을 이용하여 트래픽 폭주 공격 및 공격유형별 SNMP MIB 데이터에 내재되어 있는 특징들을 규칙의 형태로 추출하여 분석하는 의미론적 심층해석을 실시하였다. 공격유형에 대한 패턴 규칙의 추출 및 분석은 공격이 발생한 프로토콜에 대해서만 서비스를 제한하고 관리할 수 있는 정책적 근거를 제공함으로써 보다 안정적인 네트워크 환경과 원활한 자원관리를 지원할 수 있다. 본 논문에서 제시한 트래픽 폭주 공격 및 공격유형별 데이터로부터의 자동적 특징의 규칙 추출 및 의미론적 해석방법은 침입탐지 시스템을 위한 새로운 방법론에 모멘텀을 제시할 수 있다는 긍정적인 가능성과 함께 침입탐지 및 대응시스템의 정책 수립을 지원할 수 있을 것으로 기대된다.
본 연구의 목적은 효율적이고 효과적인 정책 발굴 과정에서 빅데이터의 활용이 점차 중요해지는 현실에서 지방자치단체의 정책 이슈 발굴에 빅데이터 분석을 활용하는 방안을 제시하는 데 있다. 이를 위하여 본 연구에서는 수원시를 대상으로 지난 3년간의 수원시 약 18만 건의 기사를 분석하여 정책 이슈를 발굴하였으며, 이를 IPA분석을 통해 정책의 우선순위를 평가하였다. 본 연구의 분석 결과는 신문 기사를 통한 반정형 빅데이터의 분석으로 전국의 주요 이슈와는 차별화된 지방자치단체의 차별화된 정책 이슈를 도출하는데 효과적임을 보였으며, 특히 도출된 정책 이슈들이 대부분 그 우선순위가 높은 것으로 평가되었다. 이처럼 본 연구에서 제시한 빅데이터 분석을 통한 정책 이슈 발굴의 방법론은 지방자치단체가 효율적인 정책 이슈를 도출하고 민의를 효과적으로 파악할 수 있음을 의미한다. 또한, 본 연구에서 제시한 방법론은 지방자치단체의 온라인 민원 자료, 주민 SNS 등 다양한 반정형, 비정형 빅데이터의 분석을 통한 정책 이슈 발굴에 적용이 가능할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.