Speaker diarization is the task of determining the speakers for unlabeled data, and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) has been widely used in the field of speaker diarization for its simplicity and computational efficiency. One challenging issue, however, is that if different clusters in non-spatial dataset are adjacent to each other, over-clustering may occur which subsequently degrades the performance of DBSCAN. In this paper, we identify the drawbacks of DBSCAN and propose a new density clustering algorithm based on local distribution property around object. Variable density criterions for local density and spreadness of object are used for effective data clustering. We compare the proposed algorithm to DBSCAN in terms of clustering accuracy. Experimental results confirm that the proposed algorithm exhibits higher accuracy than DBSCAN without over-clustering and confirm that the new approach based on local density and object spreadness is efficient.
Visual analysis of spatiotemporal data has focused on a variety of techniques for analyzing and exploring the data. The goal of these techniques is to explore the spatiotemporal data using time information, discover patterns in the data, and analyze spatiotemporal data. The overall trend flow patterns help users analyze geo-referenced temporal events. However, it is difficult to extract and visualize overall trend flow patterns using data that has no trajectory information for movements. In order to visualize overall trend flow patterns, in this paper, we estimate continuous distributions of discrete events over time using KDE, and we extract vector fields from the continuous distributions using the gravity model. We then apply our technique on twitter data to validate techniques.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.6
/
pp.208-221
/
2020
The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.
Park, Jong-Kee;Choi, Kun-Hyung;Lee, Sang-Gyu;Yang, Young-Myung;Cho, Jung-Ho
Journal of the Korean Institute of Gas
/
v.14
no.2
/
pp.22-26
/
2010
In this study, experimental vapor pressures and densities of vapor and liquid phases versus temperature were estimated using PC-SAFT equation. The estimated results were compared with those using PR equation of state. For the vapor phase densities, both equations well predicted the literature data. However, PC-SAFT equation showed better prediction capability for liquid phase densities. In the comparison of vapor-liquid equilibrium prediction capability for the binary systems of methane and ethane, PC-SAFT equation was better than the PR equation.
Kim, Jung-Hoi;Kim, Nam;Lee, Kwon-Yeon;Jeon, Seok-Hee;Ban, Jae-Kyung
Proceedings of the Optical Society of Korea Conference
/
2000.02a
/
pp.58-59
/
2000
현재 고속 판독률(fast-readout-rate)과 고밀도(high-capacity) 디지털 데이터 정보저장을 위해 불륨 홀로그래피(volume holography) 기술에 많은 관심이 집중되고 있다. 이러한 특징들은 다중 데이터 페이지(mulitple data page)들을 중첩(superposition)시킴으로서 이루어지며, 각각의 페이지들은 100만 픽셀이상의 정보를 가지고 page/msec의 속도로 병렬 엑세스가 가능하다. 최근 연구논문에서는 10,000 페이지의 충첩 홀로그램,$^{[1]}$ 데이터 추출을 위한 디지털 처리기술의 사용,$^{[2]}$ 광학적인 데이터 접근$^{[3]}$ , 박막 매질을 이용한 높은 면적 밀도(10bits/$mu extrm{m}$$^2$)$^{[4]}$ 등이 구현되었다. 그러나 이들 실험들은 대량의 병렬 데이터 페이지들의 실질적인 광-전 변환(optical-electrical conversion)을 구현하지 못해 고밀도와 빠른 접근 속도를 동시에 만족시키지 못하고 있다. 이러한 원인중에 하나로 출력의 CCD 픽셀 격자위에 입력의 SLM픽셀 격자를 정확하게 결상시키는데 어려움이 있기 때문이다. (중략)
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.61-64
/
2006
SVDD(support vector data description)는 one-class 서포트 벡터 학습 방법론 중 하나로 비정상 물체에서 정상 데이터를 구분하기 위해서 특징 공간(feature space)에서 정의된 구를 이용하는 전략을 쓰는 방법론이다. 하지만 SVDD는 모든 데이터에 대해서 같은 중요도를 부가하는 단점을 가지고 있다. 최근에, 이런 문제점을 보완하기 위해 데이터의 밀도 분포에 따라서 중요도를 다르게 부가하는 D-SVDD(density-induced support vector data description) 방법론이 발표되었고, 아직도 많은 연구가 진행되고 있다. 본 논문에서는 D-SVDD를 이용해서 노이즈가 섞인 비정상 데이터를 노이즈가 제거된 정상 데이터로 복원하는 방법에 대해서 논한다. 특히, 본 논문에서 제안하는 방법론을 다른 방법론과 비교하여 본 논문의 방법론의 효용성에 대해서 다룬다.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.6
/
pp.471-476
/
2022
In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.586-586
/
2013
저밀도 플라즈마는 반도체 공정, 나노 신소재 분야 및 우주 항공 분야 등 여러 분야에 이용되며, 플라즈마 진단 및 분석을 통해 효과적인 플라즈마 제어가 가능하다. 특히, 전자 에너지 분포 함수(Electron Energy Distribution Function, EEDF)는 전자 온도, 플라즈마 밀도 및 플라즈마 전위 등의 플라즈마 변수를 측정하거나 전자 가열 매커니즘 등을 이해하는데 있어서 매우 중요하므로 정밀한 측정이 필요하다. 그러나 RF fluctuation에 의해 낮은 전자 에너지 부분에서 EEDF가 왜곡되어 측정된 데이터 및 분석의 신뢰도가 떨어지게 된다. 이러한 문제점을 해결하기 위해 RF fluctuation 보상을 위한 쵸크 필터가 사용되며, 쉬스 임피던스에 비해 쵸크필터의 임피던스가 클수록 보상 효과는 높아진다. 하지만 플라즈마의 밀도가 낮아지면 쉬스 확장에 의해 쉬스 임피던스가 증가하므로 쵸크 필터에 의한 보상만으로는 충분한 개선 효과를 얻기 힘들다. 따라서 본 연구에서는 효과적인 RF fluctuation 보상을 위해 임피던스가 높은 쵸크 필터를 설계하고 추가적으로 레퍼런스링에 전압을 걸어 쉬스의 임피던스를 줄이는 방법도 적용하였다. 유도결합방식으로 $10^{-8}cm^{-3}$ 대의 저밀도 아르곤플라즈마 방전시켰으며, 단일 랑뮤어 탐침법으로 EEDF를 측정한 결과 낮은 전자 에너지 부분의 왜곡이 개선됨을 확인하였다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.2
/
pp.221-232
/
2012
The double-density discrete wavelet transform(DWT) is an improvement upon the critically sampled DWT with important additional properties. It employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is overcomplete by a factor of two. Also, this transformation is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. Proposed method is a DWT that combines the double-density DWT and quincunx sampling, each of which has its own characteristics and advantages. Especially, the quincunx sampling treats the different directions more homogeneously. As a result, since proposed method can generate sub-images of multiple degrees rotated versions, this method provides an improved performance in image processing fields.
다목적 실용위성 1호의 데이터를 이용하여 관측기간인 2000년 6월 28일에서 2001년 8월1일까지의 고도 685km, 22:50LT(Local Time) 이온층을 조사하였다. 데이터는 이온층 측정 센서(Ionospheric Measurement Sensor)로부터 얻은 전자 온도와 전자 밀도를 이용하였으며, 자기 위도로 -60$^{\circ}$-+60$^{\circ}$ 사이의 중ㆍ저위도의 값을 분석하였다. 관측 기간은 지자기 변화를 나타내는 Kp index나 태양 활동을 나타내는 F10.7이 크게 변화한 태양 극대기 기간으로, 이중 일변화의 F10.7을 통해 전자 온도와 전자 밀도의 변화를 조사하였다. (중략)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.