본 연구에서는 한국디자인진흥원의 우수디자인제품 선정이 기업의 경영성과에 미치는 영향에 대하여 분석하고, 상대적으로 경쟁력이 낮은 창업기업을 중심으로 경영성과에 대하여 연구하고자 하였다. KIDP의 2013년 통계에 따르면 제품 판매에 미치는 요소 중 디자인이 27.53%로 가장 큰 비중을 차지하고 있으며, 기업 규모에서는 대기업과 중기업에 비해 소기업이 제품판매에 미치는 요소 중 디자인 요소가 제일 높은 것으로 나타나고 있다. 또한 이번 연구를 위해 수집한 데이터의 업종별 추이를 살펴보면 기술 기반 업종이 도 소매업을 비롯한 기타 업종에 비해 증가율이 상대적으로 높게 나타나고 있는 것으로 나타나고 있다. 본 연구는 어려운 경영여건에서도 디자인의 중요성을 인식하고, KIDP로부터 우수디자인제품 선정을 받은 기업 중 186개(2013년, 2014년, 2015년)를 대상으로 업력이 7년 이하인 창업기업과 업력이 7년 이상인 계속기업의 경영성과에 차이가 있는지를 실증 분석하였다. 또한 우수디자인제품 선정기업 중 디자인의 역할이 상대적으로 크게 나타나는 제조업과 비제조업 간의 경영성과(매출액)의 차이에 대해서도 분석하였다. KIDP의 우수디자인제품 선정이 기업의 경영성과에 효과가 있는지를 선정연도를 전후 비교하여 "창업기업이 계속기업에 비해 경영성과(매출액)에 더욱 긍정적 효과를 미칠 것이다"라는 가설을 설정하고 실증분석을 한 결과는 창업기업이 경영성과에 긍정적인 영향을 미치는 것으로 나타났다. 또한 우수디자인제품 선정이 제조업과 창업기업 내의 제조기업 경영성과에도 유의미한 영향으로 나타나고 있다.
In this study, an analytical CRM for customer segmentation is exercised by integrating and analyzing the customer profile data and the access data to a particular web site. We believe that effective customer segmentation will be possible with a basis of the understanding of customer characteristics as well as behavior on the web. One of the critical tasks in the web data-mining is concerned with both 'how to collect the data from the web in an efficient manner?' and 'how to integrate the data(mostly in a variety of types) effectively for the analysis?' This study proposes a panel approach as an efficient data collection method in the web. For the customer data analysis, OLAF and a tree-structured algorithm are applied in this study. The results of the analysis with both techniques are compared, confirming the previous work which the two techniques are inter-complementary.
Unlike the previous works focusing on the state-of-the-art methodologies to improve the performance of machine learning models, this study improves the 'quality' of training data used in machine learning. We propose a method to enhance the quality of training data through the processing of 'local grammar,' frequently used in corpus analysis. We collected a vast amount of unstructured corporate review text data posted by employees working in the top 100 companies in Korea. After improving the data quality using the local grammar process, we confirmed that the classification model with local grammar outperformed the model without it in terms of classification performance. We defined five factors of work engagement as classification categories, and analyzed how the pattern of reviews changed before and after the COVID-19 pandemic. Through this study, we provide evidence that shows the value of the local grammar-based automatic identification and classification of employee experiences, and offer some clues for significant organizational cultural phenomena.
Oh, Min-Ji;Choi, Eun-Seon;Oui, Som Akhamixay;Cho, Wan-Sup
The Journal of Bigdata
/
v.5
no.2
/
pp.231-240
/
2020
With the development in the IT industry and the growth in the game industry, user's game data is recorded in seconds according to various plays and options, and a vast amount of game data can be analyzed based on Bigdata. Combined with business, Bigdata is used to discover new values for profit creation in various fields, but it is utilized in the game industry in insufficient ways. In this study, considering the characteristics of the subdivided lines, we constructed a win-loss prediction model for each line using the game data of League of Legends, and derived the importance of variables. This study can contribute to planning of strategies for general game users to get information about team members in advance and increase the win rate by using the record search sites.
Ji Hwan Shin;Ye Ji Song;Jin Hyun Ahn;Taewhi Lee;Dong-Hyuk Im
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.522-524
/
2023
위치 기반 서비스(LBS)의 확산으로 다양한 분야에서 활용할 수 있는 많은 양의 경로 데이터가 생성되고 있다. 하지만 공격자가 경로 데이터를 통해 잠재적으로 사용자의 개인정보를 유추할 수 있다는 문제점이 존재한다. 따라서 경로 데이터의 프라이버시를 보존하며 유용성을 유지할 수 있는 GAN(Generative Adversarial Network)을 사용한 많은 연구가 진행되고 있다. 그러나 GAN은 생성된 결과물을 제어하지 못한다는 한계점을 가지고 있다. 본 논문에서는 ACGAN(Auxiliary classifier GAN)을 통해 생성된 결과물을 제어함으로써 경로 데이터의 민감한 정점을 숨기고, Attention mechanism을 결합하여 높은 유용성과 익명성을 제공하는 합성 경로 생성 모델인 TAP-GAN(Trajectory attention and protection-GAN)을 제안한다. 또한 모델의 성능을 입증하기 위해 유용성 및 익명성 실험을 진행하고, 선행 연구 모델과의 비교를 통해 TAP-GAN이 경로 데이터의 유용성을 보장하면서 사용자의 프라이버시를 효과적으로 보호할 수 있음을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.325-327
/
2024
국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.
In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.
Online reviews written by tourists provide important information for the management and operation of the tourism industry. The star rating of online reviews is a simple quantitative evaluation of a product or service, but it is difficult to reflect the sincere attitude of tourists. There is also an issue; the star rating and review content are not matched. In this study, a star rating prediction model based on online review content was proposed to solve the discrepancy problem. We compared the differences in star ratings and sentiment by continent through sentiment analysis on tourist attractions and hotels written by foreign tourists who visited Korea. Variables were selected through TF-IDF vectorization and sentiment analysis results. Logit, artificial neural network, and SVM(Support Vector Machine) were used for the classification model, and artificial neural network and SVR(Support Vector regression) were applied for the rating prediction model. The online review rating prediction model proposed in this study could solve inconsistency problems and also could be applied even if when there is no star rating.
디지털 융합(Digital Convergence)이 모든 분야에서 급속히 전개됨으로서 기업들은 전략적으로 IT를 전사적으로 활용하면서 글로벌 시대의 경쟁 기업들에 비해 보다 빠른 신기술 습득을 적용함으로써 생존 경쟁의 우위 확보 전략이 점차 강화되고 있는 실정이다. IT 기술의 발전 방향도 전사적 데이터 및 비즈니스 프로세스의 통합을 통하여 전 영역에 걸쳐 신기술을 이용하여 표준화와 통합화로 진보되고 있다. 그러나 글로벌 경쟁체제인 세계화가 가속화 되고 있는 기업들의 품질 경영 활동이 실시간으로 처리되지 못함에 따라 각종 경영혁신 활동에 대한 통제/관리와 비용 절감 노력이 기업 역량 강화에 유기적인 효과를 거두지 못하고 있는 실정이다. 따라서 본 연구에서 일반적으로 제조 부문이나 사무간접(관리)부문에서도 적용 가능한 6시그마 추진 방법론을 기반으로 목표관리 및 방침관리인 Top-Down 프로세스인 순공학 품질경영 활동인 뿐만 아니라, 현장의 창의적인 품질경영 활동을 통한 Bottom-Up 프로세스인 역공학 품질경영 활동에서도 적용 가능한 실시간 동시공학적인 품질경영 활동의 프레임워크를 설계하도록 한다. 또한 가치 흐름 분석을 통해 낭비 요인을 철저하게 제거하고, 프로세스의 흐름을 최적화하여 원하는 품질경영 활동이 프로젝트로 발전하여 기업경영에 실시간으로 반영될 수 있는 전사적 통합 품질경영 활동 시스템을 제안하도록 한다.
Korean Journal of Construction Engineering and Management
/
v.20
no.3
/
pp.54-63
/
2019
Corporate Sustainability Management (CSM) is management approach and strategies that have grown in importance in recent years. and it is becoming increasingly important to organizations in every industry including the construction industry as well. It is important to establish and continuously manage and improve the strategies at the industrial and enterprise level and also to understand their trend. The most practical way to understand the overall sustainability management strategies and trend of construction companies is to analyze the sustainability management report of representative construction companies and to derive keywords for sustainability management, and then analyzed them using big data. The objective of the study is to analyze the trend of CSM strategies of Korean contractors in terms of key characteristics and implications by big data analysis employing keywords identified in the CSM reports of five major contractors in the Korean construction industry. Understanding the sustainable management strategy trend of construction companies has important significance in terms of being able to find out the issues that the construction industry and construction companies should focus on in order to pro-actively prepare for the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.