• 제목/요약/키워드: 데이터 군집화

검색결과 567건 처리시간 0.04초

다차원 데이터의 효과적인 유사도 검색을 위한 색인구조 (Index Structure for Efficient Similarity Search of Multi-Dimensional Data)

  • 복경수;허정필;유재수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.97-99
    • /
    • 2004
  • 본 논문에서는 다차원 데이터의 유사도 검색을 효과적으로 수행하기 위한 색인 구조를 제안한다. 제안하는 색인 구조는 차원의 저주 현상을 극복하기 위한 벡터 근사 기반의 색인 구조이다. 제안하는 색인 구조는 부모 노드를 기준으로 KDB-트리와 유사한 영역 분할 방식으로 분할하고 분할된 각 영역은 데이터의 분포 특성에 따라 동적 비트를 할당하여 벡터 근사화된 영역을 표현한다. 따라서, 하나의 노드 안에 않은 영역 정보를 저장하여 트리의 깊이를 줄일 수 있다. 또한 다차원의 특징 벡터 공간에 상대적인 비트를 할당하기 때문에 군집화되어 있는 데이터에 대해서 효과적이다 제안하는 색인 구조의 우수성을 보이기 위해 다양한 실험을 통하여 성능의 우수성을 입증한다.

  • PDF

움직이는 데이터 그림 (Moving Data Pictures)

  • 허명회
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.999-1007
    • /
    • 2013
  • 이 연구는 다음 몇 가지 경우에 적용 가능한 '움직이는 데이터 그림(moving data pictures)'을 제안 한다: 1) 한국어 텍스트의 단어 구름(word cloud), 2) n ${\times}$ p 행렬의 시각화(matrix visualization), 3) p ${\times}$ p 산점도 행렬의 동영상 버전, 4) k개 개체 군집의 동적 시각화 등. 이들 기법은 데이터에 내재된 숨은 정보와 시각적 아름다움을 드러내고 정보 소비자들의 흥미를 점화할 수 있다.

강건 예측과 군집화를 결합한 물체의 움직임 감지 (Object Movement Detection Integrating Robust Estimation and Clustering)

  • 장석우;허문행;이상훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.257-260
    • /
    • 2011
  • 본 논문에서는 비디오 데이터로부터 물체의 초기 움직임 영역을 자동으로 검출하는 방법을 소개한다. 제안하는 시스템은 먼저 입력 영상을 받아들인 후 인접된 영상으로부터 일정 크기의 정방향의 블록 단위로 움직임을 나타내는 모션 벡터를 추출한다. 그리고 추출된 모션벡터를 아웃라이어를 제거하는 강건 예측 알고리즘에 적용하여 배경에 해당하는 모션벡터와 잡음 및 움직이는 물체에 해당하는 모션벡터를 구분한다. 그런 다음, 군집화 알고리즘을 적용하여 이동하는 물체를 나타내는 모션벡터를 군집화하고, 군집화된 모션벡터에 해당하는 영역의 크기가 일정 수치 값 이상일 때 움직이는 물체가 감지되었다고 판단한다. 본 논문의 실험에서는 제안된 물체의 움직임 감지 방법이 기존의 방법에 비해 성능이 보다 우수함을 보인다.

  • PDF

불균일한 클러터 환경 안에서 Nonhomogeneity Detector의 다양한 정규화 방법에 따른 성능 평가 (Performance Evaluation of Nonhomogeneity Detector According to Various Normalization Methods in Nonhomogeneous Clutter Environment)

  • 류장희;정지채
    • 융합신호처리학회논문지
    • /
    • 제10권1호
    • /
    • pp.72-79
    • /
    • 2009
  • 본 논문에서는 불균일한 클러터 환경에서 다양한 정규화 방법을 사용한 NHD(nonhomogeneity detector) 기술을 통해 비행체 레이더를 위한 STAP(space-time adaptive processing)의 성능 평가를 수행하였다. 실제로 클러터는 시스템 환경에 따라 임펄스 신호와 같은 신호의 크기가 매우 큰 간섭 신호를 종종 포함하고 있기 때문에 수신된 간섭 신호는 균일한 신호와 불균일한 신호로 구성된다. 이 환경에서 STAP의 성능을 유지하기 위해서는 NHD 기술이 필수적이고, 그 NHD 결과를 이용한 정규화는 불균일한 신호를 제거하는데 효과적인 방법이다. 최적의 정규화는 주어진 데이터의 특성을 잘 고려한 대푯값을 통해서 가능하고, 이에 우리는 K 평균 군집화 알고리즘을 제안한다. 이 알고리즘에서는 군집화에 필요한 묶음의 수를 결정할 때 불규칙한 데이터의 특성을 고려할 수 있게 되고 군집화 된 결과를 이용해 균일한 데이터만을 선택하기 위한 대푯값을 결정할 수 있게 된다. 또한 여기서 우리는 시시각각 변화하는 불규칙적인 데이터의 특성을 잘 반영하기 위해, 적절한 묶음의 수를 결정하기 위한 방법을 연구한다. 시뮬레이션 결과를 통해 K 평균 군집화 알고리즘이 기존의 정규화 방법들에 비하여 매우 우수한 정규화와 목표물 검출 성능을 갖는 것을 확인할 수 있었다.

  • PDF

베이지안 망 연결 구조에 대한 데이터 군집별 기여도의 정량화 방법에 대한 연구 (Quantitative Annotation of Edges, in Bayesian Networks with Condition-Specific Data)

  • 정성원;이도헌;이광형
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.316-321
    • /
    • 2007
  • 본 연구에서는 베이지안 망 구조 학습에서, 학습 데이터의 특정 부분집합이 학습된 망의 각 연결 구조(edge)의 형성에 기여하는 정도를 정량화하는 방법을 제안한다. 생물학 정보의 분석 등에 베이지안 망 학습을 이용하는 경우, 제안된 방법은 망의 각 연결 구조의 형성에 특정 군집 데이터가 기여하는 정도의 정량화가 가능하다. 제안된 방법의 유효성을 보이기 위해, 벤치마크 베이지안 망을 이용하여 제안된 방법이 망 연결 구조에 대한 데이터 군집별 기여도를 효과적으로 정량화 할 수 있음을 보인다.

GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법 (Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification)

  • 조규철;마용범;이종식
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.167-175
    • /
    • 2007
  • 퍼지이론은 생명정보공학에서 지식을 표현하는데 활용되고 제어시스템 모델을 이해하는데 활용되어 왔다. 본 논문에서는 생명정보학의 응용 프로그램에서 중요한 데이터 분류에 초점을 맞추었다. 최적의 임계값 유도를 위한 GPCR 분류에서 기존의 순차기반 임계값 제어기법은 임계값 결정범위와 최적의 임계값 유도 시간의 문제점을 보였고, 이진기반 임계값 제어기법은 임계값 결정 초기에 시스템의 안정성에 대한 단점이 있었다. 이를 보완하기 위해 우리는 ART1 군집화를 위한 퍼지기반 임계값제어기법을 제안한다. 제안된 방법의 성능을 평가하기 위해 ART1 군집화를 위한 퍼지기반 임계값 제어기법을 구현하여 기존의 순차기반 임계값 제어기법과 이진기반 임계값 제어기법과의 인식률에 대한 구동시간의 변화, 임계값의 변화에 따른 시스템의 구동시간을 측정하였다. 퍼지기반 임계값제어 기법은 GPCR 데이터 분류에서 인식률과 구동시간에 대한 정보를 통해 분류 임계값을 조정하여 높은 인식률과 낮은 구동시간을 지속적으로 유도하여 안정적이고 효과적인 분류 시스템을 만들 수 있었다.

  • PDF

붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정 (Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm)

  • 박민재;전성해;오경환
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.12-17
    • /
    • 2003
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다

대표 경로에 기반한 XML 문서의 계층 군집화 기법 (A Hierarchical Clustering Technique of XML Documents based on Representative Path)

  • 김우생
    • 인터넷정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.141-150
    • /
    • 2009
  • XML은 데이터 교환과 정보 관리에 점차 중요해지고 있다. 근래에 XML 문서들에 대한 접근, 질의, 저장을 위한 효율적인 기법들을 개발하기 위해 많은 노력들이 이루어지고 있다. 이 논문에서 우리는 XML 문서들을 효율적으로 군집화하는 새로운 방법을 제안한다. XML 문서의 특징을 위해 XML 문서의 구조와 내용을 대표할 수 있는 새로운 대표 경로, 즉 가상 경로가 제안된다. XML 문서들을 군집화하기 위해 잘 알려진 계층 군집화 기법들을 대표 경로들에 적용하기 위한 방법도 제안된다. 실험을 통해 XML 문서의 특징으로 가상 경로를 사용했을 때 실제적인 군집들이 촘촘한 형상으로 잘 형성됨을 알 수 있다.

  • PDF

PPI 네트워크를 이용한 SNP 군집화 및 질병 연관성 분석 (SNP Grouping Method Based on PPI Network Information)

  • 이규범;이선원;강재우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.923-925
    • /
    • 2012
  • 대용량 고차원의 생물학 데이터가 매우 빠른 속도로 생산되는 현재, 단순히 고전적인 알고리즘들로는 풀 수 없는 문제들을 맞이하게 되었다. 이러한 문제들의 경우 시스템 생물학의 관점으로 다양한 생물 데이터의 융합을 통하여 접근할 경우 효율적으로 Computational Infeasibility(계산 불가능)를 해결함은 물론 그 해석 및 새로운 정보 획득에 매우 유리하다. 인간 DNA의 고차원 SNP 정보들의 군집화 및 질병 발현 패턴 분석은 그 조합의 수가 입력 데이터의 차원수에 따라 지수적(Exponentially)으로 증가하지만 PPI(단백질 상호작용) 네트워크 정보에 결합하여 필요한 중요부위를 선택적으로 이용할 경우 효율적으로 필요 SNP들의 선택 및 이로 인한 공간 축소가 가능하다.

반도체 공정 실시간 자동 진단 시스템 (A Real-Time Automatic Diagnosis System for Semiconductor Process)

  • 권오범;한혜정;김계영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.241-243
    • /
    • 2003
  • 일반적으로 사용되는 반도체 공정에 대한 진단 기법은 한 공정을 진행하기 전에 테스트 공정을 수행하여 공정의 진행 여부를 결정하고, 한 공정의 진행을 완료한 후에 다시 테스트 공정을 수행하여 공정의 결과를 진단하는 방법이다. 본 논문에서 제안하는 실시간 자동 진단 시스템은 기존 방법의 문제점인 자원의 낭비를 막고, 실시간으로 진단함으로써 시간의 낭비를 막는 진단 시스템을 제안한다. 실시간 자동 진단 시스템은 크게 시스템 초기화 단계, 학습 단계 그리고 예측 단계로 나누어진다. 초기화 단계는 진단할 공정에 대한 사전 입력값을 받아 시스템을 초기화하는 과정으로 공정장비 파라미터별 중요도 자동 설정 과정과 초기화 클러스터링으로 이루어진다. 학습 단계는 실시간으로 저장된 공정장치별 데이터와 계측기로부터 획득된 데이터를 이용하여 최적의 유사 클래스를 결정하는 단계와 결정된 유사 클래스를 이용하여 가중치를 학습하는 단계로 나누어진다. 예측 단계는 공정 진행 중 획득된 실시간 데이터를 학습 단계에서 결정된 파라미터별 가중치를 사용하여 공정에 대한 진단을 한다. 본 시스템에서 사용하는 클러스터링 알고리즘은 DTW(Dynamic Time Warping)를 이용하여 파라미터 데이터에 대한 특징을 추출하고 LBG(Linde, Buzo and Gray) 알고리즘을 사용하여 데이터를 군집화 한다.

  • PDF