• Title/Summary/Keyword: 데이터셋 정제

Search Result 43, Processing Time 0.05 seconds

Assessment of Visual Landscape Image Analysis Method Using CNN Deep Learning - Focused on Healing Place - (CNN 딥러닝을 활용한 경관 이미지 분석 방법 평가 - 힐링장소를 대상으로 -)

  • Sung, Jung-Han;Lee, Kyung-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.166-178
    • /
    • 2023
  • This study aims to introduce and assess CNN Deep Learning methods to analyze visual landscape images on social media with embedded user perceptions and experiences. This study analyzed visual landscape images by focusing on a healing place. For the study, seven adjectives related to healing were selected through text mining and consideration of previous studies. Subsequently, 50 evaluators were recruited to build a Deep Learning image. Evaluators were asked to collect three images most suitable for 'healing', 'healing landscape', and 'healing place' on portal sites. The collected images were refined and a data augmentation process was applied to build a CNN model. After that, 15,097 images of 'healing' and 'healing landscape' on portal sites were collected and classified to analyze the visual landscape of a healing place. As a result of the study, 'quiet' was the highest in the category except 'other' and 'indoor' with 2,093 (22%), followed by 'open', 'joyful', 'comfortable', 'clean', 'natural', and 'beautiful'. It was found through research that CNN Deep Learning is an analysis method that can derive results from visual landscape image analysis. It also suggested that it is one way to supplement the existing visual landscape analysis method, and suggests in-depth and diverse visual landscape analysis in the future by establishing a landscape image learning dataset.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

Modified Pyramid Scene Parsing Network with Deep Learning based Multi Scale Attention (딥러닝 기반의 Multi Scale Attention을 적용한 개선된 Pyramid Scene Parsing Network)

  • Kim, Jun-Hyeok;Lee, Sang-Hun;Han, Hyun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.45-51
    • /
    • 2021
  • With the development of deep learning, semantic segmentation methods are being studied in various fields. There is a problem that segmenation accuracy drops in fields that require accuracy such as medical image analysis. In this paper, we improved PSPNet, which is a deep learning based segmentation method to minimized the loss of features during semantic segmentation. Conventional deep learning based segmentation methods result in lower resolution and loss of object features during feature extraction and compression. Due to these losses, the edge and the internal information of the object are lost, and there is a problem that the accuracy at the time of object segmentation is lowered. To solve these problems, we improved PSPNet, which is a semantic segmentation model. The multi-scale attention proposed to the conventional PSPNet was added to prevent feature loss of objects. The feature purification process was performed by applying the attention method to the conventional PPM module. By suppressing unnecessary feature information, eadg and texture information was improved. The proposed method trained on the Cityscapes dataset and use the segmentation index MIoU for quantitative evaluation. As a result of the experiment, the segmentation accuracy was improved by about 1.5% compared to the conventional PSPNet.