최근 인터넷 자원이 폭발적으로 증가하면서 이에 효율적으로 접근하고 관리하기 위한 메타데이터가 운용되고 있다. 이와 관련하여 최근 활발하게 논의되고 있는 메타데이터간의 상호호환성에 관한 문제, 식별기호와 관련한 문제, 인쇄자원에 대한 기술 문제, 인터넷 자원 보존에 관한 문제, 메타데이터 저작도구에 관한 문제를 살펴보고 메타데이터의 향후 발전 방향을 모색해 본다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.610-612
/
2005
협동적 여과를 이용한 추천 시스템은 데이터의 희소성 문제(sparseness problem)와 초기 추천 문제 (cold-start problem)에 대해 취약점을 가지고 있다. 협동적 여과를 이용한 추천 시스템에서 사용하는 선호도 데이터에 아이템들의 전체 수량에 비해 매우 적은 양의 아이템 선호도만 존재한다면 사용자들의 유사도 측정에 문제를 발생시켜 극단적인 경우엔 협동적 추천이 불가능할 경우가 발생한다. 이와 같은 문제는 선호도 데이터에 나타난 아이템들의 총수에 비해 사용자가 선호(구매)한 아이템이 극히 적은 수량으로 존재하기 때문이며 새로운 사용자의 경우에는 아이템 선호도 정보가 전혀 없기 때문에 유사 사용자를 추출하지 못하여 아이템을 전혀 추천할 수 없는 문제가 발생한다. 본 논문에서는 희소성이 높은 선호도 데이터를 희소하지 않은 상태로 변형하는 희소 데이터 변형 기법을 제안한다. 희소 데이터 변형 기법은 희소데이터에 나타난 사용자와 아이템의 추가 속성 정보의 확률분포를 이용하여 알려지지 않은 선호도 값을 예측함으로써 희소성이 높은 선호도 데이터를 변경하고, 변경된 선호도 데이터를 협동적 추천에 적용하여 추천 성능을 향상시킨다. 이와 같은 선호도 데이터 변경 기법을 데이터 블러링(data blurring)이라 한다. 몇가지 실험 결과를 통해 제안된 기법의 효과를 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2005.05a
/
pp.431-434
/
2005
근원데이터나, 이원데이터를 이용한 문제를 해결하기 위해서는 많은 경우에 완전 해를 갖는 문제로 변형시키기 위해 정규화할 필요성이 있다. 본 논문에서는 이러한 정규화 인수를 찾는 문제를 기존의 GCV, L-Curve, 그리고 이원데이터를 RBF 신경회로망에 적용시킨 커널 학습법에 대한 각각의 성능을 비교실험을 통해 고찰한다. 이때 커널을 이용한 학습법의 성능을 향상하기 위해, 전체학습과 성능의 제한적 비례관계라는 설정아래, 각각의 학습에 따라 능동적으로 변화하는 동적모멘텀의 도입을 제안한다. 끝으로 제안된 동적모멘텀이 분류문제의 표준인 Iris 데이터, Singular 시스템의 대표적 모델인 가우시안 데이터, 그리고 마지막으로 1차원 이미지 복구문제인 Shaw데이터를 이용한 각각의 실험에서 분류문제와 회계문제 양쪽 모두에 있어 기존의 GCV, L-Curve와 동등하거나 우수한 성능이 있음을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.568-571
/
2022
본 논문에서는 서술형 수학 문제의 자동 풀이 기술 개발을 위한 데이터 증강 기법인 MOO 를 제안한다. 서술형 수학 문제는 일상에서의 상황을 수학적으로 기술한 자연어 문제로, 인공지능 모델로 이 문제를 풀이하는 기술은 활용 가능성이 높아 국내외에서 다양하게 연구되고 있으나 데이터의 부족으로 인해 성능 향상에서의 한계가 늘 존재해 왔다. 본 논문은 이를 해결하기 위해 시중의 수학 문제들을 수집하여 템플릿을 구축하고, 템플릿에 적합한 풀이계획을 생성할 수 있는 중간 언어인 MOOLang 을 통해 생성된 문제에 대응하는 Python 코드 형태의 풀이와 정답을 생성할 수 있는 데이터 증강 방법을 고안하였다. 이 기법을 통해 생성된 데이터로 기존의 최고 성능 모델인 KoEPT를 통해 학습을 시도해본 결과, 생성된 데이터셋을 통해 모델이 원활하게 데이터셋의 분포를 학습할 수 있다는 것을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2000.10c
/
pp.41-43
/
2000
멀티미디어 시스템에서는 미디어 데이터의 연속성을 보장하는 것이 중요한 문제이다. 90년대에 제안된 구역분할 디스크에서 연속성을 보장하면서 멀티미디어를 효과적으로 저장, 전송하기 위하여 새로운 스케줄링 방식과 데이터 블록의 배치가 제안되었다. 이 방식은 구역을 순환하면서 데이터 블록을 배치시키고 SCAN 알고리즘으로 데이터를 읽어 들이는 방식이다. 이 경우 SCAN 알고리즘으로 데이터를 읽어 들이므로 이중 버퍼링(double buffering) 방법을 사용하게 된다. 이중 버퍼링의 데이터를 읽어 들이는 주기와 서비스 주기의 불일치성으로 인하여 새로운 스트림의 요청이 있을 때 기존의 서비스 스트림에 주기시간의 증가로 인한 데이터의 지연문제(jitter)가 발생한다. 본 논문에서는 구역분할 디스크를 이용하는 비디오 서버에서 새로운 요구의 도착으로 인하여 발생하는 데이터 지연 문제(jitter)를 해결하기 위하여 선행 버퍼링이란 기법을 제시한다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.47-52
/
2021
최근 지문을 바탕으로 답을 추론하는 연구들이 많이 이루어지고 있으며, 대표적으로 기계 독해 연구가 존재하고 관련 데이터 셋 또한 여러 가지가 공개되어 있다. 그러나 한국의 대학수학능력시험 국어 영역과 같은 복잡한 구조의 문제에 대한 고차원적인 문제 해결 능력을 요구하는 데이터 셋은 거의 존재하지 않는다. 이로 인해 고차원적인 독해 문제를 해결하기 위한 연구가 활발히 이루어지고 있지 않으며, 인공지능 모델의 독해 능력에 대한 성능 향상이 제한적이다. 기존의 입력 구조가 단조로운 독해 문제에 대한 모델로는 복잡한 구조의 독해 문제에 적용하기가 쉽지 않으며, 이를 해결하기 위해서는 새로운 모델 훈련 방법이 필요하다. 이에 복잡한 구조의 고차원적인 독해 문제에도 대응이 가능하도록 하는 모델 훈련 방법을 제안하고자 한다. 더불어 3가지의 데이터 증강 기법을 제안함으로써 고차원 독해 문제 데이터 셋의 부족 문제 또한 해소하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
1998.10a
/
pp.741-743
/
1998
본 논문에서는 분산메모리 머신에서 병렬 이미지 윤곽선 랭킹 문제를 해결하는 새로운 알고리즘을 제안한다. 윤곽선 랭킹 문제는 주어진 이미지의 에지 윤곽선으로부터 에지 윤곽선의 선형적 표현 방식을 생성시키는 것으로, 에지점간의 순차적인 데이터 종속관계를 갖는 이 문제를 분산메모리 머신에서 수행하려면 입력 이미지에 의한 데이터의 불균형 분포와 불규칙적인 프로세서간 데이터 종속 문제를 해결해야 한다. 본 논문에서는 이 두 가지 문제를 동시에 해결할 수 있는 병렬 알고리즘을 제안하고, 제안된 알고리즘을 IBM SP2에 구현하였으며, 그 결과 윤곽선 랭킹 문제가 효과적으로 해결되었음을 확인하였다.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.389-392
/
2002
기존에 문제 은행 솔루션은 이미지 형태 또는 데이터가 응용 제품과 독립적이지 못하는 한계를 가지고 있다. 기존에 생산되었던 컨텐츠를 활용하면서도 응용제품에 독립적인 문제은행 시스템을 만들기 위해서 XML을 이용한 데이터베이스의 구축이 필요하다. 이를 위하여 데이터를 XML로 전환하고 이렇게 전환된 XML 데이터를 XSL을 통해 표현할 수 있어야 한다. 본 논문은 기존의 문제은행 방식의 문제를 해결하기 위해 XML을 기반으로 하는 문제은행을 구축하는 방법을 알아보도록 하겠다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.304-306
/
2001
많은 실세계의 문제에서 일반적인 패턴 분류 알고리즘들은 데이터의 불균형 문제에 어려움을 겪는다. 각각의 학습 예제에 균등한 중요도를 부여하는 기존의 기법들은 문제의 특징을 제대로 파악하지 못하는 경우가 많다. 본 논문에서는 불균형 데이터 문제를 해결하기 위해 퍼셉트론에 기반한 부스팅 기법을 제안한다. 부스팅 기법은 학습을 어렵게 하는 데이터에 집중하여 앙상블 머신을 구축하는 기법이다. 부스팅 기법에서는 약학습기를 필요로 하는데 기존 퍼셉트론의 경우 문제에 따라 약학습기(weak learner)의 조건을 만족시키지 못하는 경우가 있을 수 있다. 이에 커널을 도입한 커널 퍼셉트론을 사용하여 학습기의 표현 능력을 높였다. Reuters-21578 문서 집합을 대상으로 한 문서 여과 문제에서 부스팅 기법은 다층신경망이나 나이브 베이스 분류기보다 우수한 성능을 보였으며, 인공 데이터 실험을 통하여 부스팅의 샘플링 경향을 분석하였다.
센서 네트워크는 네트워크 특성상 근본적으로 기존의 네트워크와 다른 많은 제약 사항을 가지고 있다. 이러한 제약사항으로는 대량의 센서를 위한 비용 문제, 센서 자체의 물리적 취약성 문제 그리고 센서가 취합하는 데이터의 중요도에 따른 보안성 문제 등이 제기될 수 있다. 특히, 본 논문에서는 다양한 센서 네트워크의 기술 이슈 중에서 센서 네트워크의 특정 애플리케이션 지향적 정보 습득 특성에 초점을 맞추었다. 이때 센서 네트워크에서 빼놓을 수 없는 전력 소비 문제가 함께 고려된 센서 네트워크의 효율적인 데이터 수집을 위한 클러스터 기반 지연 적응적 전략과 커버리지 적응적 전략을 소개하였다. 또한 이러한 데이터 습득 과정에서 발생할 수 있는 이상 데이터에 대한 검출 문제를 제시하고 그 대응방안으로서 K-means clustering을 사용한 비교사 학습 기반 방식을 제하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.