• Title/Summary/Keyword: 데이터기반 모델

Search Result 6,379, Processing Time 0.034 seconds

An Access Control Model for Privacy Protection using Purpose Classification (사용목적 분류를 통한 프라이버시 보호를 위한 접근제어 모델)

  • Na Seok-Hyun;Park Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.39-52
    • /
    • 2006
  • Recently purpose is used by an crucial part to security management when collecting data about privacy. The W3C(World Wide Web Consortium) describes a standard spec to control personal data that is provided by data providers who visit the web site. But they don't say anymore about security management about personal data in transit after data collection. Recently several researches, such as Hippocratic Databases, Purpose Based Access Control and Hippocratic in Databases, are dealing with security management using purpose concept and access control mechanism after data collection a W3C's standard spec about data collection mechanism but they couldn't suggest an efficient mechanism for privacy protection about personal data because they couldn't represent purpose expression and management of purposes sufficiently. In this paper we suggest a mechanism to improve the purpose expression. And then we suggest an accesscontrol mechanism that is under least privilege principle using the purpose classification for privacy protection. We classify purpose into Along purpose structure, Inheritance purpose structure and Stream purpose structure. We suggest different mechanisms to deal with then We use the role hierarchy structure of RBAC(Role-Based Access Control) for flexibility about access control and suggest mechanisms that provide the least privilege for processing the task in case that is satisfying using several features of purpose to get least privilege of a task that is a nit of business process.

Semantic Segmentation of the Habitats of Ecklonia Cava and Sargassum in Undersea Images Using HRNet-OCR and Swin-L Models (HRNet-OCR과 Swin-L 모델을 이용한 조식동물 서식지 수중영상의 의미론적 분할)

  • Kim, Hyungwoo;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Kim, Jinsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.913-924
    • /
    • 2022
  • In this paper, we presented a database construction of undersea images for the Habitats of Ecklonia cava and Sargassum and conducted an experiment for semantic segmentation using state-of-the-art (SOTA) models such as High Resolution Network-Object Contextual Representation (HRNet-OCR) and Shifted Windows-L (Swin-L). The result showed that our segmentation models were superior to the existing experiments in terms of the 29% increased mean intersection over union (mIOU). Swin-L model produced better performance for every class. In particular, the information of the Ecklonia cava class that had small data were also appropriately extracted by Swin-L model. Target objects and the backgrounds were well distinguished owing to the Transformer backbone better than the legacy models. A bigger database under construction will ensure more accuracy improvement and can be utilized as deep learning database for undersea images.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.6
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.

Longitudinal Mediated Effects of Informal Labeling on the Relationship between Adolescent Abuse and Academic Achievement: Application of Labeling Theory with Autoregressive Cross-Lagged Modeling (청소년의 피학대경험이 학업성취에 미치는 영향에 대한 비공식낙인의 종단적 매개효과 검증: 낙인이론과 자기회귀교차지연 모델을 적용하여)

  • Taekho Lee ;Yoonsun Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.22 no.4
    • /
    • pp.567-593
    • /
    • 2016
  • This study examined longitudinal mediated effects of informal labeling on the relationship between adolescent abuse and academic achievement using autoregressive cross-lagged modeling. Data were obtained from the second, third, and fourth waves of the middle school student cohort (N=3,168) of the Korean Youth Panel Survey. The major longitudinal findings of this study are as follows: First, adolescent abuse was found to have a positive association with future informal labeling. Second, informal labeling was found to have a negative association with future academic achievement. Finally, the longitudinal relationship between adolescent abuse and academic achievement was partially mediated by informal labeling. Based on these results, this study suggests directions for adolescent abuse prevention. The need for education and prevention of informal labeling was discussed, as well as the direction of intervention programs for adolescents with experience of informal labeling. Furthermore, this study may provide empirical evidence for labeling theory and contribute to increasing awareness on the longitudinal influence of adolescent abuse and informal labeling.

Applicability Evaluation of Deep Learning-Based Object Detection for Coastal Debris Monitoring: A Comparative Study of YOLOv8 and RT-DETR (해안쓰레기 탐지 및 모니터링에 대한 딥러닝 기반 객체 탐지 기술의 적용성 평가: YOLOv8과 RT-DETR을 중심으로)

  • Suho Bak;Heung-Min Kim;Youngmin Kim;Inji Lee;Miso Park;Seungyeol Oh;Tak-Young Kim;Seon Woong Jang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1195-1210
    • /
    • 2023
  • Coastal debris has emerged as a salient issue due to its adverse effects on coastal aesthetics, ecological systems, and human health. In pursuit of effective countermeasures, the present study delineated the construction of a specialized image dataset for coastal debris detection and embarked on a comparative analysis between two paramount real-time object detection algorithms, YOLOv8 and RT-DETR. Rigorous assessments of robustness under multifarious conditions were instituted, subjecting the models to assorted distortion paradigms. YOLOv8 manifested a detection accuracy with a mean Average Precision (mAP) value ranging from 0.927 to 0.945 and an operational speed between 65 and 135 Frames Per Second (FPS). Conversely, RT-DETR yielded an mAP value bracket of 0.917 to 0.918 with a detection velocity spanning 40 to 53 FPS. While RT-DETR exhibited enhanced robustness against color distortions, YOLOv8 surpassed resilience under other evaluative criteria. The implications derived from this investigation are poised to furnish pivotal directives for algorithmic selection in the practical deployment of marine debris monitoring systems.

A Study on the Economic Efficiency of Tourism Industry in China's Bohai Rim Region Using DEA Model (DEA 모델을 이용한 중국 환 발해만 지역 관광산업의 경제효율성에 관한 연구)

  • Li Ting;Jae Yeon Sim
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.267-276
    • /
    • 2023
  • Based on the tourism input-output data of five provinces and cities in China's Bohai Rim region from 2015~2021, this study analyzes the efficiency of regional tourism using DEA-BCC and DEA-Malmquist index, as well as its contribution to regional economic efficiency, and identifies factors influencing the comprehensive efficiency. The research results indicate that the comprehensive efficiency of the tourism industry in the China Bohai Sea region has reached an optimal level of 88.9%, but there is still room for improvement, with overall fluctuations. The overall productivity of the tourism industry exhibits a "U"-shaped fluctuating pattern, with growth mainly driven by technological advancements. Due to the impact of the COVID-19 pandemic, the region experienced a nearly 50% decrease in total factor productivity in 2019~2020. However, in 2021, with the implementation of various government stimulus policies, the tourism efficiency rapidly recovered to 80% of pre-pandemic levels. In terms of the impact of the tourism industry on the regional economy in the China Bohai Sea region, Hebei Province stands out as a significant contributor. Based on the aforementioned research findings, the following recommendations are proposed in three aspects: optimizing the supply structure, increasing innovation investment, and strengthening internal collaboration. These recommendations provide valuable insights for enhancing regional tourism efficiency and promoting regional synergy.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

Can ChatGPT Pass the National Korean Occupational Therapy Licensure Examination? (ChatGPT는 한국작업치료사면허시험에 합격할 수 있을까?)

  • Hong, Junhwa;Kim, Nayeon;Min, Hyemin;Yang, Hamin;Lee, Sihyun;Choi, Seojin;Park, Jin-Hyuck
    • Therapeutic Science for Rehabilitation
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2024
  • Objective : This study assessed ChatGPT, an artificial intelligence system based on a large language model, for its ability to pass the National Korean Occupational Therapy Licensure Examination (NKOTLE). Methods : Using NKOTLE questions from 2018 to 2022, provided by the Korea Health and Medical Personnel Examination Institute, this study employed English prompts to determine the accuracy of ChatGPT in providing correct answers. Two researchers independently conducted the entire process, and the average accuracy of both researchers was used to determine whether ChatGPT passed over the 5-year period. The degree of agreement between ChatGPT answers of the two researchers was assessed. Results : ChatGPT passed the 2020 examination but failed to pass the other 4 years' examination. Specifically, its accuracy in questions related to medical regulations ranged from 25% to 57%, whereas its accuracy in other questions exceeded 60%. ChatGPT exhibited a strong agreement between researchers, except for medical regulation questions, and this agreement was significantly correlated with accuracy. Conclusion : There are still limitations to the application of ChatGPT to answer questions influenced by language or culture. Future studies should explore its potential as an educational tool for students majoring in occupational therapy through optimized prompts and continuous learning from the data.