• Title/Summary/Keyword: 데로우니삼각화

Search Result 2, Processing Time 0.016 seconds

Stress Intensity Factor Analysis System for 3D Cracks Using Fuzzy Mesh (퍼지메쉬를 이용한 3차원 균열에 대한 응력확대계수 해석 시스템)

  • Lee, Joon-Seong;Lee, Eun-Chul;Choi, Yoon-Jong;Lee, Yang-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.122-126
    • /
    • 2008
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic stress intensity factor analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. Finally, the complete finite element(FE) model generated, and a stress analysis is performed. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

Parallel Finite Element Analysis System Based on Domain Decomposition Method Bridges (영역분할법에 기반을 둔 병렬 유한요소해석 시스템)

  • Lee, Joon-Seong;Shioya, Ryuji;Lee, Eun-Chul;Lee, Yang-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • This paper describes an application of domain decomposition method for parallel finite element analysis which is required to large scale 3D structural analysis. A parallel finite element method system which adopts a domain decomposition method is developed. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay triangulation method is introduced as a basic tool for element generation. Domain decomposition method using automatic mesh generation system holds great benefits for 3D analyses. Aa parallel numerical algorithm for the finite element analyses, domain decomposition method was combined with an iterative solver, i.e. the conjugate gradient(CG) method where a whole analysis domain is fictitiously divided into a number of subdomains without overlapping. Practical performance of the present system are demonstrated through several examples.