• Title/Summary/Keyword: 덧파종

Search Result 8, Processing Time 0.03 seconds

Effect of Cool-season Grass Overseeding on Turf Quality, Green Period and Turf Density in Zoysiagrass Lawn (한국잔디에 한지형잔디 덧파종에 따른 잔디품질, 녹색기간 및 밀도에 미치는 영향)

  • Han, Sang-Wook;Soh, Ho-Sup;Choi, Byoung-Rourl;Won, Seon-Yi;Lee, Sang-Deok;Kang, Chang-Sung
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.333-344
    • /
    • 2017
  • This study was conducted to examine the effect of cool-season grass overseeding on the green period, turf quality and density in zoysiagrass lawn. Treatments were perennial ryegrass (PR) overseeding ($60g\;m^{-2}$) on medium-leaf type zoysiagrass, Kentucky bluegrass (KB) overseeding ($20g\;m^{-2}$) on medium-leaf type zoysiagrass and narrow-leaf type zoysiagrass, and no overseeding on medium-leaf type zoysiagrass. Overseeding of KB or PR effectively provided quality improvement of zoysiagrass lawn by extending green-period about one month in spring and two months in fall season. PR overseeding showed quick green cover within 2-3 weeks but decreased the quality of overseeded zoysiagrass lawn during the summer season. Whereas, KB overseeding showed slow green cover taking two to three month after seeding but provided stable and good turf quality throughout the years. KB or PR overseeding significantly increased the turf density of zoysiagrass lawn except the period of summer depression of PR. The ground coverage of cool-season grasses ranged from 30 to 80% with considerable seasonal variation. As a result, KB and PR have their strengths and weaknesses as an overseeding material. Thus, the use of KB and PR as a mixture would provide better overseeding performance in zoysiagrass lawn.

Mesotrione and Seeding Rate Effects to Recover Kentucky Bluegrass Contaminated by Creeping Bentgrass (Creeping bentgrass에 침입된 Kentucky bluegrass 회복을 위한 Mesotrione과 Kentucky bluegrass 덧파종 효과)

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.64-68
    • /
    • 2012
  • Creeping bentgrass (Agrostis stolonifera L.) is one of the highest maintained turfgrass but often problematic especially for Kentucky bluegrass fairway. Mesotrione is one of selective herbicide that is firstly registered for corn (Zea mays L.) and provides preemergence and postemergence control of broadleaf and annual grassy weeds. Although mesotrione is effective to eradicate area contaminated by creeping bentgrass, protracted time is required to recover damaged area by rhizome extension of Kentucky bluegrass. Overseeding is typically used to fill bare or damaged areas using appropriate turf species to create a uniform turfgrass surface. The objectives of this study were to evaluate mesotrione and seeding rate effects to recover Kentucky bluegrass contaminated by creeping bentgrass. Six treatments consisted of three mesotrione rates and two Kentucky bluegrass seeding rates. The mesotrione rate were 0, 0.05 and 0.10 m $ml^{-2}$. Two seeding rate of to Kentucky bluegrass 'Midnight' were 15 and 30 g $m^{-2}$. Mesotrione application and Kentucky bluegrass overseeding at the same time is helpful to damage creeping bentgrass but not for establishment of Kentucky bluegrass to refill damaged area. To maximize mesotrione effects, temperature above $20^{\circ}C$ would be recommended based on this study.

Production of Carpet Sod Using Seed and Runner of Zoysiagrass (Zoysia spp.) (한국잔디(Zoysia spp.)의 종자 및 영양체를 이용한 carpet 잔디 생산)

  • 최준수;양근모;김동섭
    • Asian Journal of Turfgrass Science
    • /
    • v.15 no.2
    • /
    • pp.39-50
    • /
    • 2001
  • This research was designed to develop the rapid propagation technology of zoysiagrass using carpet production and to provide turf-growing farmers with efficient cultivation methods thor carpet production. Turfgrass cultivar tested in cadet production by seeding was Z. japonica cv. Zenith. Since the surface coverage rate reached to 85% in 2 months after seeding at the rate 6g/$m^2$ in the early part of July, carpet production using ‘Zenith’seeds would be possible to produce within within the same year. Thrfgrasses tested in carpet production by vegetative propagation were Z. japonica, medium type Z. matrella, fine type Z. matrella, and medium type Z. japonica. Planting rates of vegetative parts (sprigs) were 1.2L/$m^2$, 2.4L/$m^2$, 2.5L/$m^2$, and 5L/$m^2$. Two different sizes of sprig were used; 1~2 nodes and 3~4 nodes. Surface coverage rate was 90% in one year after planting at the rate of 2.5L sprigs of medium type Z. japonica. Therefore, the use of sprigs with 3~4 nodes at the planting rate of 2.5L would be suitable for the carpet prodcution. Three months old zoysiagrass carpet (Zenith) was overseeded with Kentucky bluegrass, perennial ryegrass, and tall fescue at two different overseeding rate. Surface coverage rate was the highest (80%) at the plot overseeded with perennial ryegrass that showed the earliest germination. Suitable overseeding species for the rapid sod formation at the early stage of establishment were tall fescue and perennial ryegrass and desirable overseeding time was from early to middle of September.

  • PDF

Effect of Herbicide 'Kerb' on Growth of Perennial Ryegrass (Lolium perenne L. 'Accent') and Zoysiagrass (Zoysia japonca 'Zenith') under Shading Treatments (차광조절하에서 제초제 Kerb가 퍼레니얼 라이그래스와 한국잔디의 생육에 미치는 영향)

  • Ham, Tae-Hwan;Yun, Jong-Jin;Lee, Sang-Gi;Ku, Ja-Hyung
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • In order to investigate an artificially transition method of perennial ryegrass(Lolium perenne L. 'Accent') overseeded on zoysiagrass (Zoysia japonca Zenith') with Kerb (3,5-jichloro-N (1,1-dimethyl-2-propynyl). We observed turfgrass growth and physiological responses of the two turfgrasses under the shading treatments. The experiment was conducted in greenhouse during April- August. Shading was generally using a black shade net product whose the shade level was done into 0, 35 and 75%, actual light intensities were 589, 378 and $135\;{\mu}mol{\cdot}m^{-2}{\cdot}s$ PAR, respectively. The four levels of Kerb treatment were 0, 0.1 0.2, and $0.4\;g{\cdot}m^{-2}$. As shading was getting increased, growth of perennial ryegrass was increased slowly, but zoysiagrass was reduced and almost all of experiments showed significant differences statistically. Perennial ryegrass exhibited inclination that growth was reduced in more than Kerb $0.4\;g{\cdot}m^{-2}$ by shades. On the other hand, it was shown that the growth of zoysigrass was reduced by shades largely and it was not effected by Kerb. Through this study, it was determined that Kerb is effective for elimination of overseeded perennial ryegrass on zoysiagrass. Moreover, when excluding perennial ryegrass under the condition like shade, it is desirable for treating high concentration more than the basic processing amount.

Comparison of Turfgrass Density, Uniformity and Tiller Characteristics in Mixtures of Overseeded Warm-Season and Cool-Season Grasses (덧파종한 난지형 및 한지형 혼합 식생 잔디밭에서 잔디밀도, 균일도 및 분얼경 특성 비교)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.67-76
    • /
    • 2017
  • The study was initiated to evaluate the effects of overseeding warm-season grass (Zoysia japonica Steud.) with cool-season grasses (CSG) on turfgrass density, uniformity and tiller appearance and to determine turfgrass species and seeding rate applicable for a practical use. Treatments were comprised of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), tall fescue (TF, Festuca arundinacea Schreb.) and their mixtures. Overall turfgrass density and uniformity were much better with the overseeded treatments over the control. In early stage after overseeding, the greater the PR in treatments, the greater the turfgrass density and uniformity. But the higher the KB, the lower the density and uniformity. From the middle-stage evaluation, however, we observed the opposite results as compared with early-stage findings. Accordingly, the KB was highest in turfgrass density and uniformity, while the PR lowest. In regards of mixtures, both turfgrass density and uniformity were better with increased KB and decreased PR in overseeding rates. As for a medium-quality mixtures of Korean lawngrass with CSG, it would be the best choice to apply with KB at $50g\;m^{-2}$ and equal combination of KB, PR and TF by 1/3 in mixing at $75g\;m^{-2}$ in terms of sustainable density and uniformity.

Study on Vinyl Coating Cultivation of Potatoes under Low Temperature Conditions (조기 재배시 감자의 비닐 피복 재배 연구)

  • Choi, Kwan Soo;Jung, Gun Ho
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.556-564
    • /
    • 2017
  • Appropriate soil temperature and early planting of potato is very important for the successful potato-soybean cropping system in central region of South Korea. This experiment was carried out to determine the effect of mulching materials on the growth and yield of potato (Solanum tuberosum L.). Five different mulch treatments were had been applied on an upland soil as follows ; no mulch (NM), transparent film (TF), transparent film + additional transparent film (TF + ATF), black film (BF), and black film + additional transparent film (ATF). In the period of sowing time to removing additional films, mean soil temperature of the treatments was in the order of TF+ATF > TF > BR+ATF > BF as $20.3^{\circ}C$ > $18.5^{\circ}C$ > $16.1^{\circ}C$ > $15.4^{\circ}C$, respectively and that of NM was $13.8^{\circ}C$. The accumulated soil temperature was TF > NM > BF during the removing additional films to earthing at inter-tillage. On the changes in the soil temperature during a whole day, the temperature in the BF was lower than NM during around 18:00 PM to 12:00 NM, while NM was higher than BF in the time period of 10:00AM to 21:00PM. The sequence of potato sprout emergence was 15 > 18 > 20 > 22 days of TF+ATF, TF, BF+ATF, and BF, respectively and that of NM was 24 days. Comparing to the NM, potato sprout emergence was observed on the TF+ATF treated plot as early as 9 days. At 10 days before harvest, the significant difference in the tuber dry weight had been observed and the sequence tuber weight was in the order of TF > TF+ATF > BF+ATF > BF > NM. The potato yields of TF, TF+ATF, and BF+ATF were increased of 40.7, 37.3, and 22% as compared to NM ($2,805kg\;10a^{-1}$), but almost same yield in the BF. The differences of tuber dry weight and potato yields was co-related with the temperature rise of soil by the application of mulching materials on soil. Based on these results, application of mulching film had been very effective to increase the tuber size and the yield of potato by the temperature rise during seedling stage of potato. Transparent mulching was better than black mulching especially for the emergence of sprout of potato in relation to minimizing cooling injury.

Effects of Cool-Season Turfgrass Overseeding onto Zoysiagrass (들잔디 위의 한지형 잔디 덧파종 효과)

  • Shim, Sang-Ryul;Jeong, Dae-Young;Ahn, Byung-Joon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.85-93
    • /
    • 2004
  • This study was carried out to find out the effect of cool-season turfgrass overseeding onto zoysiagrass(Zoysia japonica L.) for extending green color and solving traffic problem during dormant periods. Overseeding rates of cool-season turfgrasses were $10g/m^2$ of Kentucky bluegrass(KB1), $20g/m^2$of Kentucky b1uegrass(KB2), $60g/m^2$ of perennial ryegrass(PR), $80g/m^2$ of Tall fescue(TF), and $10g/m^2$ of Kentucky bluegrass + $10g/m^2$ of perennial ryegrass mixture(KB+PR) onto 2m${\times}$2m(width${\times}$length) zoysiagrass plots with 3 replications.1 to 9-sca1e of visual quality and visual color were measured after treatment, Consequently cool-season turfgrass overseeding gave a good performances of extending the green periods and enhancing the turf grass quality. KB1 and KB2 were found to be excellent performances for visual quality and visual color compared to PR, TF, KB+PR and control. KB2 showed better turf performances than KB1 within Kentucky bluegrass overseedings. Turfgrass color was kept up for 10 months by overseeding of cool-season turfgrasses(KB1, KB2, PR, TP, KB+PR) compared to about 5~6 months by zoysiagrass(Control). The visual quality and visual color of PR and TF showed good performances during a green-up period of spring, but decreasing tendencies through the summer.Percent diseases data revealed also higher ratings for PR and TF compared to for KB1 and KB2.

Managing Mixtures of Tall Fescue (Festuca arundinacea Schreb) and Zoysiagrass (Zoysia japonica Steud.) for Athletic Turf (톨 페스큐와 한국들잔디로 혼합 조성된 운동장 잔디관리)

  • Li, Deying;Han, Lei
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.197-216
    • /
    • 2008
  • Managing a mixture of zoysiagrass with tall fescue has been proposed in transitional zone as a practical practice to combine the advantages of the two species and compensate the limitations. To manage the mixture is a challenge because two species are involved. The objective of this study was to determine if zoysiagrass/tall fescue mixture can be maintained with proper mowing and fertilization under simulated sport traffic at an acceptable quality level. Zoysiagrass was seeded in June and tall fescue was overseeded in August 1996. In November 1996, zoysiagrass coverage was 62.36, 29.88, and 30.02% for 0, 50, and $100\;Kg\;ha^{-l}\;N$ rates, respectively. At the same time, zoysiagrass coverage was 23.53, 41.95, and 57.40% for the mowing heights of 6.5, 5.0, and 3.5 cm, respectively. Zoysiagrass and tall fescue coverage in July 1997 was showing the same trend as in the late season of 1996 although the differences were not as big. There were significant interactions between N fertilization rates and mowing heights. In November 1998, the zoysiagrass coverage was different among the two tall fescue variety mixtures, 21.68, and 32.25% in 'Arid' and 'Grasslands Garland', respectively. Zoysiagrass coverage was favored in lower mowing height, lower N rates, and lower traffic. Interaction effects on zoysiagrass were found between tall fescue variety and nitrogen rate, tall fescue variety and mowing height, and traffic and nitrogen rate. Zoysiagrass shoot density was 7.42, 25.47, and 58.95% for mowing heights of 6.5, 5, and 3.5 cm, respectively; and it was 47.27, 20.27, and 26.26% for N rates of 0, 50, and $100\;Kg\;ha^{-l}\;$, respectively in 1998. The effects on zoysiagrass shoot density from the interaction of N rate and tall fescue variety was significant in 1998. Shoot density responded to the N rate, mowing height, and traffic differently from the ground coverage, indicating that shoot and leaf growth have different adaptation strategies.