• Title/Summary/Keyword: 덤프면

Search Result 2, Processing Time 0.015 seconds

Design of Venturi Dump Surface for Pre-filming Airblast Injector (예막 공기충돌형 분사기의 벤추리 덤프면 설계)

  • Shin, Dongsoo;Choi, Myunghwan;Radhakrishnan, Kanmaniraja;Koo, Jaye;Jung, Seungchai
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.44-54
    • /
    • 2018
  • In a spray experiment using a venturi mounted on a lean premixed LPP injector, droplets appear to have non-uniform distributions. To solve this problem, the exit angle of the venturi was changed to form a dump surface on the nozzle neck. The dump surface improved the atomization performance and minimized droplet loss while forming recirculation zone in the venturi exit. In order to solve the non-uniform spray of the injector, the flow characteristics inside the venturi and SMD of the spray are compared. Finally, an optimum venturi shape is selected to minimize the spray loss and improve the spray performance.

GE 7FA+e DLN-2.6 Gas Turbine Combustor : Part II Design of Lab Scale Dump Combustor (GE 7FA+e DLN-2.6 가스터빈 연소기 연구 : Part II 모형 덤프 연소기 설계)

  • Oh, Jeong-Seog;Kim, Min-Ki;Heo, Pil-Won;Lee, Jang-Soo;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.51-59
    • /
    • 2008
  • DLN-2.6 combustion tuning was carried out for the maintenance of GE 7FA+e gas turbine at Seo-Incheon combined cycle power plant. DLN-2.6 combustion system has the higher level of yellow plume and combustion vibration problem in the initial operating mode than that of the base mode($100{\sim}160MW$). The objectives of this study are to investigate the causes of yellow plume and combustion vibration problems at the starting mode and to suggest the best operating condition for the reliable working of the real combustors. By the analysis of tuning data, we could conclude that a yellow plume is caused by the rich mixture(${\phi}{\sim}1$) in a PM 1 nozzle at mode 3($20{\sim}30MW$). In addition, the combustion vibration($120{\sim}140Hz$) might be related to the cold flow characteristics of PM 3 nozzles at mode 6B($40{\sim}45MW$).