• Title/Summary/Keyword: 더블플랩

Search Result 3, Processing Time 0.018 seconds

A Study on Double Flan of Wells Turbine for Wave Power Conversion (파력발전용 웰즈터빈의 더블플랩에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Yoon, S.H.;Lee, Y.W.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.616-621
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 0021 Wells turbine. The five double flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-D numerical grid is based upon that of an experimental test rig. This paper tries to analyze the optimum double flap of Wells turbine with the numerical analysis.

  • PDF

A CFD Study on Wells Turbine Flap for Wave Power Generation (CFD에 의한 파력발전용 웰즈터빈의 플랩에 관한 연구)

  • Kim, J.H.;Kim, B.S.;Choi, M.S.;Lee, Y.W.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.520-525
    • /
    • 2003
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% chord height difference were selected. A Wavier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-D numerical grid is based upon that of an experimental test rig. This paper tries to analyze the optimum double flap of Wells turbine with the numerical analysis.

  • PDF

A Study on the Flow characteristics of Wells Turbine for Wave Power Conversion by Various Flap Shape (파력발전용 웰즈터빈의 Flap형상변화에 따른 유동 특성에 관한 연구)

  • Kim, Dong-Kyun;Choi, Gab-Song;Kim, Jeong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries to disign the double flap of Wells turbine with the numerical analysis.