• Title/Summary/Keyword: 대화 생성

Search Result 426, Processing Time 0.026 seconds

Context-aware and controllable natural language generation model for task-oriented dialogue systems (목적 지향 대화 시스템을 위한 문맥 기반의 제어 가능한 자연어 생성 모델 )

  • Jina Ham;Jaewon Kim;Dongil Yang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.71-76
    • /
    • 2022
  • 목적 지향 대화 시스템은 사용자가 원하는 목적을 달성하기 위해 사용하는 시스템으로 일상 대화와 다르게 시스템이 정보를 명확히 전달하는 것이 중요하다. 따라서 최근 연구에서 목적 지향 대화 시스템을 위한 자연어 생성 모델은 정해진 대화 정책에 따라 알맞은 응답을 생성할 수 있도록 의도와 슬롯 정보를 담은 대화 행위(Dialog Act)를 활용한다. 하지만 대화 행위는 생성하는 문장을 탁월하게 제어하는 반면에 대화의 흐름과 상황에 맞게 다양한 문장을 생성하기 어렵다는 문제점을 가지고 있다. 이러한 문제점을 해소하고자 본 논문에서는 목적에 부합하는 내용을 명확하게 자연어로 생성하기 위해 대화 행위를 사용하면서 동시에 일상 대화 생성 모델과 같이 문맥을 고려하여 대화 흐름에 어울리는 자연스러운 문장을 생성할 수 있는 문맥 기반의 제어 가능한 자연어 생성 모델을 제안한다. 실험에서는 KoGPT2 사전 학습 모델과 한국어 대화 데이터셋을 사용하였으며 실험을 통해 대화 행위 기반의 자연어 생성 모델과 본 연구에서 제안한 문맥 기반의 제어 가능한 자연어 생성 모델을 비교하였다. 결과적으로 대화 행위를 단독으로 학습한 모델보다 일정 문맥을 함께 학습한 모델이 유의미한 BLEU 점수 향상을 보인다는 점을 확인하였다.

  • PDF

Knowledge-grounded Dialogue Generation Using Domain-level Learning Approach for Practical Services (현업 서비스를 위한 도메인 수준 학습 방법을 활용한 지식 기반 대화생성)

  • Chae-Gyun Lim;Young-Seob Jeong;ChangWon Ok;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.619-623
    • /
    • 2022
  • 대화생성은 대규모 학습 데이터로부터 사전 학습된 언어모델을 활용한 도전적인 다운스트림 태스크 중 하나이다. 대화에서 특정한 지식에 대한 맥락이 보존된 응답 문장을 생성하기 위한 기술의 일환으로써 지식 기반 대화생성이 연구되고 있으며, 현업에서는 사업목표에 따른 대화 서비스를 제공하는 목적으로 이러한 기술을 적용할 수 있다. 본 논문에서는, 각각의 서비스 도메인에 특화된 모델을 적절히 활용 가능하도록 전체 데이터를 도메인별로 구분하여 학습한 다수의 대화생성 모델을 구축한다. 또한, 특정 도메인의 데이터로 학습된 모델이 나머지 도메인에서 어떤 수준의 대화생성이 가능한지 비교 분석함으로써 개별 학습된 모델들이 도메인의 특성에 따라 서로 다른 영향력이나 연관성을 나타낼 가능성을 확인한다. 이러한 실험적인 분석 결과를 바탕으로 현업의 서비스에서 개별 도메인에 특화된 모델이 적절히 활용하는 것이 유용함을 확인하고자 한다.

  • PDF

Reducing Toxic Response Generation in Conversational Models using Plug and Play Language Model (Plug and Play Language Model을 활용한 대화 모델의 독성 응답 생성 감소)

  • Kim, Byeong-Joo;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.433-438
    • /
    • 2021
  • 대화 시스템은 크게 사용자와 시스템이 특정 목적 혹은 자유 주제에 대해 대화를 진행하는 것으로 구분된다. 최근 자유주제 대화 시스템(Open-Domain Dialogue System)에 대한 연구가 활발히 진행됨에 따라 자유 주제를 기반으로 하는 상담 대화, 일상 대화 시스템의 독성 발화 제어 생성에 대한 연구의 중요성이 더욱 커지고 있다. 이에 본 논문에서는 대화 모델의 독성 응답 생성을 제어하기 위해 일상 대화 데이터셋으로 학습된 BART 모델에 Plug-and-Play Language Model 방법을 적용한다. 공개된 독성 대화 분류 데이터셋으로 학습된 독성 응답 분류기를 PPLM의 어트리뷰트(Attribute) 모델로 활용하여 대화 모델의 독성 응답 생성을 감소시키고 그 차이를 실험을 통해 정량적으로 비교한다. 실험 결과 어트리뷰트 모델을 활용한 모든 실험에서 독성 응답 생성이 감소함을 확인하였다.

  • PDF

Prompt-based Data Augmentation for Generating Personalized Conversation Using Past Counseling Dialogues (과거 상담대화를 활용한 개인화 대화생성을 위한 프롬프트 기반 데이터 증강)

  • Chae-Gyun Lim;Hye-Woo Lee;Kyeong-Jin Oh;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.209-213
    • /
    • 2023
  • 최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.

  • PDF

A Query-aware Dialog Model for Open-domain Dialog (입력 발화의 키워드를 반영하는 응답을 생성하는 대화 모델)

  • Lim, Yeon-Soo;Kim, So-Eon;Kim, Bong-Min;Jung, Heejae;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.274-279
    • /
    • 2020
  • 대화 시스템은 사용자의 입력 발화에 대해 적절하고 의미 있는 응답을 생성하는 시스템으로 seq2seq 구조를 갖는 대화 모델이 주로 연구되고 있다. 그러나 seq2seq 기반 대화 모델은 입력 발화와 관련성이 떨어지는 응답을 생성하거나 모든 입력 발화와 어울리지만 무미건조한 응답을 생성하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 입력 발화에서 고려해야 하는 키워드를 찾고 그 키워드를 반영하는 응답을 생성하는 모델을 제안한다. 제안 모델은 주어진 입력 발화에서 self-attention을 사용해 각 토큰에 대한 키워드 점수를 구한다. 키워드 점수가 가장 높은 토큰을 대화의 주제 또는 핵심 내용을 포함하는 키워드로 정의하고 응답 생성 과정에서 키워드와 관련된 응답을 생성하도록 한다. 본 논문에서 제안한 대화 모델의 실험 결과 문법과 입력 발화와 생성한 응답의 관련성 측면에서 성능이 향상되었음을 알 수 있었다. 특히 관련성 점수는 본 논문에서 제안한 모델이 비교 모델보다 약 0.25점 상승했다. 실험 결과를 통해 본 논문이 제안한 모델의 우수성을 확인하였다.

  • PDF

Noised Guide-based Generative Model for Open-domain Conversation (오픈 도메인 대화를 위한 노이징된 가이드 기반 생성 모델)

  • Bit-Na Keum;Hong-Jin Kim;Sang-Min Park;Jai-Eun Kim;Jin-Xia Huang;Oh-Woog Kwon;Hark-Soo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.82-87
    • /
    • 2022
  • 대화 모델은 대표적으로 검색 모델 또는 생성 모델을 기반으로 구현된다. 최근에는 두 모델의 장점은 융합하고 단점은 보완하기 위해 검색 기법과 생성 기법을 결합하는 연구가 활발히 이루어지고 있다. 그러나 생성 모델이 검색된 응답을 전혀 반영하지 않고 응답을 생성하여 검색 모델을 간과하는 문제 또는 검색된 응답을 그대로 복사해 생성하여 검색 모델에 과의존하는 문제가 발생한다. 본 논문에서는 이러한 문제들을 완화하며 검색 모델과 생성 모델을 모두 조화롭게 활용할 수 있는 대화 모델을 제안한다. 생성 모델이 검색 모델을 간과하는 문제를 완화하기 위해 학습 시 골드 응답을 검색된 응답과 함께 사용한다. 또한, 검색 모델에 과의존하는 문제를 완화하기 위해 검색된 응답들의 내용어 일부를 마스킹하고 순서를 무작위로 섞어 노이징한다. 검색된 응답은 대화 컨텍스트와의 관련성이 높은 것만을 선별하여 생성에 활용한다. 정량 평가 및 정성 평가를 통해 제안한 방법의 성능 향상 효과를 확인하였다.

  • PDF

Knowledge-Grounded Dialogue Generation Using Prompts Combined with Expertise and Dialog Policy Prediction (전문 지식 및 대화 정책 예측이 결합된 프롬프트를 활용한 지식 기반 대화 생성)

  • Eojin Joo;Chae-Gyun Lim;DoKyung Lee;JunYoung Youn;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.409-414
    • /
    • 2023
  • 최근 지식 기반 대화 생성에 많은 연구자가 초점을 맞추고 있다. 특히, 특정 도메인에서의 작업 지향형 대화 시스템을 구축하는 것은 다양한 도전 과제가 있으며, 이 중 하나는 거대 언어 모델이 입력과 관련된 지식을 활용하여 응답을 생성하는 데 있다. 하지만 현재 거대 언어 모델은 작업 지향형 대화에서 단순히 정보를 열거하는 방식으로 응답을 생성하는 경향이 있다. 이 논문에서는 전문 지식과 대화 정책 예측 모델을 결합한 프롬프트를 제시하고 작업 지향형 대화에서 사용자의 최근 입력에 대한 정보 제공 및 일상 대화를 지원하는 가능성을 탐구한다. 이러한 새로운 접근법은 모델 파인튜닝에 비해 비용 측면에서 효율적이며, 향후 대화 생성 분야에서 발전 가능성을 제시한다.

  • PDF

Dynamic Sentence General ion for a Conversational Agent Using Sentence Plan Tree and Genetic Programming (문장계획 트리와 유전자 프로그래밍을 이용한 대화형 에이전트의 동적 문장생성)

  • Lim Sungsoo;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.538-540
    • /
    • 2005
  • 대화형 에이전트가 다양한 분야에서 적용됨에 따라서 현실성 있는 대화 생성을 위한 자연언어 생성에 대한 연구가 관심을 끌고 있다. 대화형 에이전트에서는 보통 미리 준비된 문장을 이용하여 사용자와 대화를 수행하지만, 최근에는 문장을 동적으로 생성하고 학습함으로써 보다 유연하고 현실성있는 서비스를 제공하는 대화형 에이전트가 활발히 연구되고 있다. 본 논문에서는 문장계획 트리를 인코딩 방법으로 적용한 대화형 유전자 프로그래밍을 통해 대화형 에이전트의 문장을 생성하는 방법을 제안한다. 피험자 12명을 대상으로 템플릿 기반 시스템과의 비교 실험결과, 제안하는 방법의 유용성을 확인할 수 있었다.

  • PDF

Methodology of Trigger Generation optimized for Dialogue Relation Extraction task (대화형 관계 추출 태스크에 최적화된 트리거 생성 방법론)

  • Gyeongmin Kim;Junyoung Son;Jinsung Kim;Jaechoon Jo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.374-378
    • /
    • 2022
  • 대화형 관계 추출의 목표는 주어진 대화에서 두 개체 간의 관계를 식별하는 것이다. 대화 중에 화자는 개체 및 관계와 관련이 있는 단서인 트리거를 통해 특정 개체 간 관계를 식별하는 것에 힌트를 얻을 수 있다. 그러나 데이터에 대해 항상 트리거 정보가 존재하는 것이 아니므로 트리거를 활용해 성능을 향상시키는 것은 어렵다. 본 논문은 이 문제점을 해소하기 위해 대화, 개체, 관계 중심으로 트리거 생성 모델을 학습하고, 이를 통해 생성된 트리거를 대화형 관계 추출에 학습하여 관계 식별에 효과적인 성능 향상을 보이는 접근법을 제안한다. 제안하는 접근법은 대화형 관계 추출 태스크에서 기존 성능과 비교한 결과 Dev, Test에서 각각 F1 19.74%p, F1 15.53%p 의 성능 향상을 보였다.

  • PDF

A study on the Automatic Generation of Conversational QA Corpora (대화형 질의응답 말뭉치 자동 생성에 대한 연구)

  • Hwang, Seonjeong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.133-138
    • /
    • 2021
  • 최근 다양한 분야에서 자동 고객 응대 시스템을 도입하고 있으며 이에 따른 대화형 질의응답 시스템 연구의 필요성이 증가하고 있다. 본 논문에서는 새로운 도메인의 대화형 질의응답 시스템 구축에 필요한 말뭉치를 자동으로 생성하는 대화형 질의-응답 생성 시스템을 소개한다. 또한 이전 대화 내용을 고려하여 문서로부터 사용자의 다음 질문 대상이 될만한 응답 후보를 추출하는 맥락 관련 응답 추출 과제와 이에 대한 성능 평가 지표인 Sequential F1 점수를 함께 제안한다. 대화형 질의응답 말뭉치인 CoQA에 대해 응답 후보 추출 실험을 진행한 결과 기존의 응답 추출 모델보다 우리의 맥락 관련 응답 추출 모델이 Sequential F1 점수에서 31.1 높은 성능을 보였다. 또한 맥락 관련 응답 추출 모듈과 기존에 연구된 대화형 질의 생성 모듈을 결합하여 개발한 대화형 질의-응답 생성 시스템을 통해 374,260 쌍의 질의-응답으로 구성된 대화형 질의응답 말뭉치를 구축하였다.

  • PDF