• Title/Summary/Keyword: 대화이해

Search Result 342, Processing Time 0.031 seconds

A Dataset for Persona-based Korean Dialogue Modeling (페르소나 기반 한국어 대화 모델링을 위한 데이터셋)

  • Yohan Lee;Hyun Kim;Jonghun Shin;Minsoo Cho;Ohwoog Kwon;Youngkil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.512-516
    • /
    • 2022
  • 페르소나 기반의 대화 시스템은 일관적인 대화를 수행할 수 있어 많은 관심을 받고 있다. 영어권에서 구축된 페르소나 대화 데이터셋은 서로의 페르소나를 알아가기 보다는 자신의 페르소나에 대해서만 말하는 경향을 보이며 이는 상대방의 말을 이해하여 관련 대화를 진행하는 대화의 특성을 반영하지 못한다. 본 연구에서는 회사 방문객이 안내 시스템과 대화하는 상황을 가정하여 안내 시스템이 주도적으로 방문객의 페르소나를 묻고 관련 대화를 수행하는 데이터셋을 구축함과 동시에 목적지향 대화 시스템의 대화 관리 프레임워크를 기반으로 시스템 주도적인 대화를 모델링하는 페르소나 대화 관리 모델을 제안한다. 실험을 통해 제안한 대화 관리 모델의 대화 이해 및 정책 성능을 검증하고 방문객의 페르소나를 예측할 때 대화 정책의 성능이 향상됨을 보임으로써 구축한 데이터셋이 이해와 정책이 포함된 대화의 특성을 반영하는 것을 확인한다.

  • PDF

"A Descriptive Review on Korean Case Markers and their Deletion in On-Going Dialogues" ("대화체 이해 시스템에서의 격조사 생략현상에 대한 한 기술적 고찰")

  • Hong, Min-Pyo
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.160-166
    • /
    • 1997
  • 본고는 우리말에서 빈번하게 일어나는 축약 및 생략 현상을 언어학적으로 규명하기 위한 노력의 일환으로,. 이를 위해 실제 대화체에서 나타나는 격조사 생략현상에 대한 관찰결과를 기술적으로 분석하고, 이를 토대로 향후 대화체 이해 시스템 구현을 위한 생략된 격조사 복원연구의 방향을 제시한다. 연구를 위해 녹취한 약 한시간 분량의 2인 흑은 3인의 자연스런 라디오 대담 프로그램 전화대화들을 전사한 자료를 중심으로, 실제 대화에서 실현되거나 생략된 격조사들을 유형별로 분석한 격과를 보고하고, 기존의 연구 및 관찰에 경험적 타당성을 제공함과 동시에 그들의 분석을 대화이해 시스템에 구현하고자 할 때 발생할 수 있는 문제점을 지적한다. 나아가 격조사가 생략된 명사구들이 나타나는 환경을 통사 및 담화적 특성에 따라 분류함으로써, 대화이해 시스템 구현을 목적으로 하는 격조사 생략현상 연구 및 이를 토대로 한 명사구와 용언 사이의 문법적 의미적 관계 규명을 위한 향후 연구에서 어휘 부의 확장 필요성을 논한다.

  • PDF

A Korean to English Dialogue Machine Translation System ($\Rightarrow$영 대화체 기계번역 시스템)

  • 서정연
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.65-70
    • /
    • 1994
  • 대화체는 문어체와는 달리 생략과 대용현상이 빈번히 발생하고, 문장의 표면적 의미외에 화자가 전달하고자 하는 의도를 내포하고 있다. 그러므로 대화체 번역은 언어적 분석에 의한 단순한 번역이 아닌, 이해에 기반한 번역이어야 한다. 본 논문에서는 대화의 상황을 모델링한 대화모델을 이용하여 이해에 기반한 대화체 기계번역을 시도하였다. 또한 대화체 기계번역이 자동통역 등에 응용된다고 할 때, 실시간 번역과 불완전한 입력과 같은 예외 상황에 대한 적절한 대응이 보장되어야 한다. 이러한 점을 반영하기 위하여 지식기반 모델과 확률 기반 모델을 결합한 해석, 생성 시스템을 구현하여 효율성과 견고성을 갖춘 이해에 기반한 대화체 기계번역 시스템을 연구하고자 한다. 이 연구는 한국통신으로부터 지원을 받아서 수행하고 있는 과제로써 현재 3000단어 수준의 실제 대화를 대상으로 한->영 대화 번역에 대해 실험을 하고 있으며, 시스템의 확장성을 고려한 지식 베이스-사전, 문법 등-를 구축하였다.

  • PDF

Improving Dialogue Intent Classification Performance with Uncertainty Quantification based OOD Detection (불확실성 정량화 기반 OOD 검출을 통한 대화 의도 분류 모델의 성능 향상)

  • Jong-Hun Shin;Yohan Lee;Oh-Woog Kwon;Young-Kil Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.517-520
    • /
    • 2022
  • 지능형 대화 시스템은 줄곧 서비스의 목표와 무관한 사용자 입력을 전달받아, 그 처리 성능을 의심받는다. 특히 종단간 대화 이해 생성 모델이나, 기계학습 기반 대화 이해 모델은 학습 시간대에 한정된 범위의 도메인 입력에만 노출됨으로, 사용자 발화를 자신이 처리 가능한 도메인으로 과신하는 경향이 있다. 본 연구에서는 대화 생성 모델이 처리할 수 없는 입력과 신뢰도가 낮은 생성 결과를 배제하기 위해 불확실성 정량화 기법을 대화 의도 분류 모델에 적용한다. 여러 번의 추론 샘플링이 필요 없는 실용적인 예측 신뢰도 획득 방법과 함께, 평가 시간대와 또다른 도메인으로 구성된 분포 외 입력 데이터를 학습에 노출시키는 것이 분포 외 입력을 구분하는데 도움이 되는지를 실험으로 확인한다.

  • PDF

Statistical Korean Spoken Language Understanding System for Dialog Processing (대화처리를 위한 통계기반 한국어 음성언어이해 시스템)

  • Roh, Yoon-Hyung;Yang, Seong-II;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.215-218
    • /
    • 2012
  • 본 논문에서는 한국어 대화 처리를 위한 통계기반 음성언어이해 시스템에 대해 기술한다. 음성언어이해시스템은 대화처리에서 음성 인식된 문장으로부터 사용자의 의도를 인식하여 의미표현으로 표현하는 기능을 담당한다. 한국어의 특성을 반영한 실용적인 음성언어이해 시스템을 위해서 강건성과 적용성, 확장성 등이 요구된다. 이를 위해 본 시스템은 음성언어의 특성상 구조분석을 하지 않고, 마이닝 기법을 이용하여 사용자 의도 표현을 생성하는 방식을 취하고 있다. 또한 한국어에서 나타나는 특징들에 대한 처리를 위해 자질 추가 및 점규화 처리 등을 수행하였다. 정보서비스용 대화처리 시스템을 대상으로 개발되고 있고, 차량 정보서비스용 학습 코퍼스를 대상으로 실험을 하여 문장단위 정확률로 약 89%의 성능을 보이고 있다.

  • PDF

Goal Oriented Dialogue System Based on Deep Recurrent Q Network (심층 순환 Q 네트워크 기반 목적 지향 대화 시스템)

  • Park, Geonwoo;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.147-150
    • /
    • 2018
  • 목적 지향 대화 시스템은 자연어 이해, 대화 관리자, 자연어 생성과 같은 세분화 모델들의 결합으로 이루어져있어 하위 모델에 대한 오류 전파에 취약하다. 이러한 문제점을 해결하기 위해 자연어 이해 모델과 대화 관리자를 하나의 네트워크로 구성하고 오류에 강건한 심층 Q 네트워크를 제안한다. 본 논문에서는 대화의 전체 흐름을 파악 할 수 있는 순환 신경망인 LSTM에 심층 Q 네트워크 적용한 심층 순환 Q 네트워크 기반 목적 지향 대화 시스템을 제안한다. 실험 결과, 제안한 심층 순환 Q 네트워크는 LSTM, 심층 Q 네트워크보다 각각 정밀도 1.0%p, 6.7%p 높은 성능을 보였다.

  • PDF

RNN Sentence Embedding and ELM Algorithm Based Domain and Dialogue Acts Classification for Customer Counseling in Finance Domain (RNN 문장 임베딩과 ELM 알고리즘을 이용한 금융 도메인 고객상담 대화 도메인 및 화행분류 방법)

  • Oh, Kyo-Joong;Park, Chanyong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.220-224
    • /
    • 2017
  • 최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.

  • PDF

RNN Sentence Embedding and ELM Algorithm Based Domain and Dialogue Acts Classification for Customer Counseling in Finance Domain (RNN 문장 임베딩과 ELM 알고리즘을 이용한 금융 도메인 고객상담 대화 도메인 및 화행분류 방법)

  • Oh, Kyo-Joong;Park, Chanyong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.220-224
    • /
    • 2017
  • 최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.

  • PDF

Example-based Dialog Modeling for English Conversation Tutoring (영어 회화 교육을 위한 예제 기반 대화 시스템)

  • Lee, Sungjin;Lee, Cheongjae;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.1-6
    • /
    • 2007
  • 본 논문에서는 영어 회화 교육을 위한 예제 기반 대화 시스템에 대해 논한다. 기존의 획일적인 멀티미디어 영어 학습에서 벗어나 자연어 처리 및 대화 기술을 이용하여 지능적인 일대일 영어 회화 교육 제공을 목적으로 한다. 본 시스템은 미숙한 학습자 발화를 이해할 수 있으므로 불완전한 언어 구사 능력으로도 대화를 참여할 수 있는 체험형 학습을 제공한다. 이를 통해 학습자에게 영어를 배우려는 흥미로운 동기를 부여한다. 또한 학습자의 표현력 향상을 위한 교육적인 도움 기능을 갖추고 있다. 이를 위해 우리는 학습자의 미숙한 표현을 이해하는 통계 기반의 언어 이해 모듈, 도메인 확장성이 뛰어난 예제 기반 대화 관리 모듈, 교육 및 평가 기능을 개발하였다.

  • PDF

Workbench for building Task based Dialog System (태스크 기반 대화 시스템 구축 도구)

  • Park, Eun-Jin;Kwon, Oh-Woog;Kim, Young-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.209-211
    • /
    • 2012
  • 본 논문의 대화시스템 구축도구는 태스크 기반 대화 시스템을 구축하는데 필요한 대화 시나리오 지식과 이를 처리하는 태스크 그래프, 슬롯 체계, 대화 라이브러리 등을 생성하고 관리할 수 있는 웹기반 대화 시스템 구축 도구이다. 이 도구는 태스크 그래프를 시각적으로 대화 모델 설계자에게 표시하고, 대화 모델 설계자는 시각적으로 표시된 태스크 그래프를 보며 태스크의 흐름을 한눈에 파악하고 대화 시스템의 시나리오 흐름을 생성하고 편집할 수 있도록 한 것이 특징이다. 또한 대화 모델 설계자와 시나리오 태깅 작업자들 모두는 자신이 구축한 지식이나 대화 태스크를 시스템에 직접 반영하고 실시간으로 대화 시스템에 적용해 봄으로써 대화 시스템의 이해를 높이고 고품질의 대화 시스템을 구축할 수 있다.

  • PDF