• Title/Summary/Keyword: 대화성

검색결과 1,024건 처리시간 0.027초

소셜챗봇 구축에 필요한 관계성 추론을 위한 텍스트마이닝 방법 (Identifying Social Relationships using Text Analysis for Social Chatbots)

  • 김정훈;권오병
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.85-110
    • /
    • 2018
  • 챗봇은 음성, 이미지, 비디오 또는 텍스트와 같은 다양한 매채를 이용하여 대화가 가능한 대화형 어시스턴트이자 인공지능을 기반으로 사용자의 질문에 답하거나 문제를 해결할 수 있는 사용자 친화적 프로그램이다. 하지만 현재 챗봇은 사용자가 요청한 작업을 정확하게 수행하는 기술적측면에 초점이 맞추어져 있으며, 개인화된 대화로 사용자와 챗봇간의 관계성 구축에는 제한적이어서 일부 사례에도 불구하고 소셜챗봇이 되기에는 미흡한 상태이다. 만약 인간의 사회성을 나타내는 특징 중 하나인 관계성을 챗봇이 인식하여 알맞게 대화를 하여 문제를 해결할 수 있다면, 개인화된 대화를 할 수 있을 뿐만 아니라 인간과 유사한 대화를 할 수 있을 것이다. 본 연구의 목적은 사용자가 입력한 내용을 기반으로 챗봇과 사용자 간의 관계성을 추론하고 대화 상황에 맞게 대화 상대가 적절한 대화를 수행 할 수 있는 텍스트 분석 방법을 제안하는 것이다. 본 연구의 실험 및 평가를 하기 위하여 실제 SNS대화 내용을 사용하였다. 분석결과 개인정보 보호를 위해 사용자의 개인 프로필 정보가 제외된 방법에서도 우수한 결과를 나타내어 소셜 챗봇에 적합한 방법으로 검증되었다.

금융 서비스 챗봇의 인터렉션 유형별 UX 평가 (UX Evaluation of Financial Service Chatbot Interactions)

  • 조국애;윤재영
    • 한국HCI학회논문지
    • /
    • 제14권2호
    • /
    • pp.61-69
    • /
    • 2019
  • 최근 새로운 ICT 흐름으로 부상하고 있는 챗봇은 금융분야에서 활발한 도입이 되고 있다. 챗봇은 사용자와 대화의 인터렉션을 통해서 서비스를 수행한다. 본 연구는 금융 서비스 챗봇의 인터렉션 대화유형이 사용자의 유용성, 사용성, 감성, 보안성에 미치는 효과에 대해 알아보고자 하였다. 이론적 고찰을 통해 챗봇의 구현방식에 기반한 대화방식에 따라 닫힌대화, 열린대화, 혼합대화 유형으로 나누어 연구를 진행하였다. 3 가지 유형의 금융 챗봇 프로토타입을 제작하였고, 실험자들은 계좌조회, 계좌이체, Q&A 의 금융 테스크 수행 후 설문조사를 실시하였다. 실험연구분석 결과 챗봇의 인터렉션 대화 유형은 유용성, 사용성에 영향을 미치는 것으로 나타났다. 사용자들은 닫힌대화와 혼합대화의 인터렉션이 금융 서비스를 오조작없이 쉽게 처리할 수 있게 하는 직관적인 인터페이스로써 선호한 것으로 나타났다. 본 연구는 자연스러운 대화를 통해 서비스를 제공하는 인공지능의 감성적인 요소와 금융 업무를 수행하는 기능적인 요소를 모두 고려해야 하는 금융 챗봇 사용자들의 심층적인 이해를 필요로 하는 사용자 경험 향상을 위한 자료로 활용될 수 있다.

영역 전환 전략을 사용한 다 영역 대화 프레임워크 (Multi-domain Dialog Framework using Domain Switching Strategy)

  • 최원석;강상우;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.152-154
    • /
    • 2010
  • 다 영역 대화 시스템 개발에서는 영역 확장이 쉬워야 하며 처리하는 대화 영역이 늘어나더라도 대화 과정에서 사용자 편의성을 유지해야 하는 점이 중요하다. 본 논문에서는 이런 특성을 가지는 다 영역 대화 시스템을 작성하기 위한 프레임워크를 제안한다. 이 프레임워크는 공통의 인터페이스를 구현하는 영역 전문가(Domain Expert) 기반으로 동작하므로 영역 확장이 용이하다. 또한 진행 중이던 대화를 종료하지 않은 채 타 대화 영역으로 이동하는 영역 전환(Domain Switching) 현상은 다 영역 대화를 복잡하게 만드는 주요한 원인 중 하나로써 이를 효과적으로 관리할 수 있는 영역 전환 전략을 사용하여 사용자 편의성을 확보하였다.

  • PDF

대화 요약 생성을 위한 한국어 방송 대본 데이터셋 (KMSS: Korean Media Script Dataset for Dialogue Summarization )

  • 김봉수;전혜진;전현규;정혜인;장정훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.198-204
    • /
    • 2022
  • 대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.

  • PDF

자연언어 대화 (NL Dialogue)에서 플랜 인지 시스템을 이용한 사용자의 목표 (Goal) 도출 (User goal and plan recognition using plan recognition system in natural language Dialogue)

  • 김도완;박재득;박동인
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.393-399
    • /
    • 1996
  • 자연언어 대화에서 사용자의 정확한 의도(Intention)를 인지함에 있어서 나타나는 문제는, 자연언어 대화체의 생략성이 강한 문장의 불완전성 외에도, 여러 연속되는 대화체 문장에 분산되어 나타나는 사용자의 의도를 정확히 파악하는 것이다. 이러한 불완전한 대화체 문장 속에 산재되어 있는 사용자의 의도를 빠르고 신뢰성 있게 인지하여, 사용자와 시스템간의 원활한 자연언어 대화 상호작용 (Interaction)을 가능하게 하기 위하여 플랜 인지 시스템의 이용은 매우 효과적으로 보인다. 현재까지 개발된 대부분의 플랜 인지시스템들은 사용자의 액션 분석 및 플랜의 인지를 통하여 HCI를 지원하는 측면에 (예: 지능형 도움말) 집중되어 있다. 본 논문은 지역 광고 신문에 실린 매입-매도광고 데이타베이스의 검색을 위한 Natural language dialogue user interface에서 사용자 의도를 인지할 수 있는 플랜 인지 시스템을 기술하고 있다.

  • PDF

입력 발화의 키워드를 반영하는 응답을 생성하는 대화 모델 (A Query-aware Dialog Model for Open-domain Dialog)

  • 임연수;김소언;김봉민;정희재;박성배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.274-279
    • /
    • 2020
  • 대화 시스템은 사용자의 입력 발화에 대해 적절하고 의미 있는 응답을 생성하는 시스템으로 seq2seq 구조를 갖는 대화 모델이 주로 연구되고 있다. 그러나 seq2seq 기반 대화 모델은 입력 발화와 관련성이 떨어지는 응답을 생성하거나 모든 입력 발화와 어울리지만 무미건조한 응답을 생성하는 문제가 있다. 본 논문에서는 이를 해결하기 위해 입력 발화에서 고려해야 하는 키워드를 찾고 그 키워드를 반영하는 응답을 생성하는 모델을 제안한다. 제안 모델은 주어진 입력 발화에서 self-attention을 사용해 각 토큰에 대한 키워드 점수를 구한다. 키워드 점수가 가장 높은 토큰을 대화의 주제 또는 핵심 내용을 포함하는 키워드로 정의하고 응답 생성 과정에서 키워드와 관련된 응답을 생성하도록 한다. 본 논문에서 제안한 대화 모델의 실험 결과 문법과 입력 발화와 생성한 응답의 관련성 측면에서 성능이 향상되었음을 알 수 있었다. 특히 관련성 점수는 본 논문에서 제안한 모델이 비교 모델보다 약 0.25점 상승했다. 실험 결과를 통해 본 논문이 제안한 모델의 우수성을 확인하였다.

  • PDF

도메인 상태를 이용한 다중 도메인 대화 상태 추적 (Multi Domain Dialog State Tracking using Domain State)

  • 전현민;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.421-426
    • /
    • 2020
  • 다중 도메인 목적 지향 대화에서 기존 딥 러닝을 이용한 대화 상태 추적(Dialog state tracking)은 여러 턴 동안 누적된 사용자와 시스템 간 대화를 입력 받아 슬롯 밸류(Slot value)를 추출하는 모델들이 연구되었다. 하지만 이 모델들은 대화가 길어질수록 연산량이 증가한다. 이에 본 논문에서는 다중 도메인 대화에서 누적된 대화의 history 없이 슬롯 밸류를 추출하는 방법을 제안한다. 하지만, 단순하게 history를 제거하고 현재 턴의 발화만 입력 받는 방법은 문맥 정보의 손실로 이어진다. 따라서 본 논문에서는 도메인 상태(Domain state)를 도입하여 매 턴 마다 대화 상태와 함께 추적하는 모델을 제안한다. 도메인 상태를 같이 추적함으로써 현재 어떠한 도메인에 대하여 대화가 진행되고 있는지를 파악한다. 또한, 함축된 문맥 정보를 담고 있는 이전 턴의 대화 상태와 도메인 상태를 현재 턴의 발화와 같이 입력 받아 정보의 손실을 줄였다. 대표적인 데이터 셋인 MultiWOZ 2.0과 MultiWOZ 2.1에서 실험한 결과, 대화의 history를 사용하지 않고도 대화 상태 추적에 있어 좋은 성능을 보이는 것을 확인하였다. 또한, 시스템 응답과 과거 발화에 대한 의존성을 제거하여 end-to-end 대화 시스템으로의 확장이 좀 더 용이할 것으로 기대된다.

  • PDF

상호대화형 객체 삽입과 가변 버퍼 정책을 이용한 스트림 동기화 기법의 성능 평가 (Performance Estimation of Stream Synchronization Mechanism using Insertion Interactive Object and Variable Suffer)

  • 이병문;이양민;이재기
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (C)
    • /
    • pp.58-60
    • /
    • 2003
  • 현재 시간성에 민감한 서비스가 인터넷상에서 중요한 위치물 차지하고 있다 시간성이 민감한 서비스는 사용자와 상호대화를 가능케 하는 미디어 전송 방법 및 연속적 재생을 보장하기 위한 버퍼 정책이 요구된다 관련 연구에서는 설러 방법을 통해 동기화를 달성하고 있으나 상호대화라는 측면에서는 만족할 만한 해결책을 제시하지 못하고 있다. 본 논문에서는 상호대화형 객체(Interactive Object)를 각 미디어 파일에 삽입하고 객체들이 서로의 정보를 이용할 수 있는 함수를 설계하여 실시간에 원하는 미디어 프레임의 재생위치를 찾아냄으로써 동기화와 상호대화성이라는 문제를 해결하였다. 또한 네트워크에 대한 의존성 때문에 발생하는 불연속적인 재생은 크기를 변화시킬 수 있는 가변 버퍼를 이용함으로써 해결하였다. 그리고 두 가지 방법을 적용한 기법의 우수성을 시뮬레이션 실험을 통하여 확인하였다.

  • PDF

신경망을 이용한 대화체 문장의 담화 구조 분석 (Analysis of Discourse Structure using Neural Network in Dialogue Sentences)

  • 김학수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.419-424
    • /
    • 1998
  • 담화 구조를 파악하기 위한 대표적인 방법으로 Litman과 Allen 의 계획 기법에 의한 것과 RDTN을 이용한 것을 들 수 있다. 그 중에서도 RDTN을 이용하여 대화의 흐름을 파악하려는 시도는 간단하며, 결정적이라는 장점이 있는 반면에 몇 가지 단점도 가지고 있다. RETN을 이용한 대화 분석의 가장 큰 단점은 정확히 분석된 화행을 입력으로 사용한다는 것이다. 즉, 현 상태에서 다음 상태로의 전이에 정의된 화행 이외의 화행이 입력으로 사용되면 분석을 실패하게 된다. 또 하나의 단점은 RDTN 이 어느정도 영역에 의존적인 특성을 보인다는 것이다. 본 논문에서는 이러한 확장성에 대한 문제점을 해결하고, 화행 분석의 어려움을 덜기 위해 신경망을 이용한 새로운 대화 전이망을 제안한다. 제안된 대화 전이 신경망은 지역적 대화 전이 신경망과 전역적 대화 전이 신경망은 이전의 두 발화와 현재 발화와의 관계를 살펴서 현재 발화가 이전 대화의 연속인지, 새로운 대화이 시작인지, 아니면 부대화의 시작인지를 결정하는 역할은 한다.전역적 대화전이 신경망은 담화 스택과의 상호 작용을 통해 담화의 전체구조를 살피고,전체 담화 구조에서 현재 발화가 어떤 역할을 하는지를 결정한다.

  • PDF

DBERT: 멀티턴 문맥의 특징을 고려한 대조 학습 기반의 임베딩 모델링 (DBERT: Embedding Model Based on Contrastive Learning Considering the Characteristics of Multi-turn Context )

  • 박상민;이재윤;김재은
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.272-274
    • /
    • 2022
  • 최근에는 사람과 기계가 자유롭게 대화를 주고받을 수 있는 자유 주제 대화 시스템(Open-domain Dialogue System)이 다양한 서비스에 활용되고 있다. 자유 주제 대화 시스템이 더욱 다양한 답변을 제공할 수 있도록 사전학습 기반의 생성 언어모델이 활용되고 있지만, 답변 제공의 안정성이 떨어져 검색을 활용한 방법 또한 함께 활용되고 있다. 검색 기반 방법은 사용자의 대화가 들어오면 사전에 구축된 데이터베이스에서 유사한 대화를 검색하고 준비되어있는 답변을 제공하는 기술이다. 하지만 멀티턴으로 이루어진 대화는 일반적인 문서의 문장과 다르게 각 문장에 대한 발화의 주체가 변경되기 때문에 연속된 발화 문장이 문맥적으로 밀접하게 연결되지 않는 경우가 있다. 본 논문에서는 이와 같은 대화의 특징을 고려하여 멀티턴 대화를 효율적으로 임베딩 할 수 있는 DBERT(DialogueBERT) 모델을 제안한다. 기존 공개된 사전학습 언어모델 기반의 문장 임베딩 모델과 비교 평가 실험을 통해 제안하는 방법의 우수성을 입증한다.

  • PDF