• 제목/요약/키워드: 대화방식

검색결과 431건 처리시간 0.027초

대화에서 응답 관계의 시각화 (Visualization of Relation among Turns on Conversation)

  • 김경덕
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.226-228
    • /
    • 2002
  • 본 논문에서는 실시간 대화 행위에서 대화 메시지 사이의 응답 관계를 시각적으로 표현하는 방법을 제안한다. 제안한 방법은 기존 텍스트 기반 대화 방식과 트리 기반 대화 방식을 결합한 형태로서 대화 메시지의 일반적인 응답 관계뿐만 아니라, 기존 트리 기반 인터페이스에서 지원이 어려운 최근 수신 대화 메시지의 응답 관계를 시각화함으로써 대화자의 상호작용을 용이하게 한다. 이러한 방법은 기존 텍스트 방식의 테이블 구조에 트리 구조를 결함하여 대화에서 응답 관계를 명확히 구분한다. 제안한 방법의 구현은 XML과 DOM을 이용하여 대화 메시지와 대화 시스템을 구현하였으며, 응용 분야는 협업, 원격 교육, 온라인 게임 등이다.

  • PDF

도메인 특정 지식을 결합한 End-to-End Learning 방식의 한국어 식당 예약 대화 시스템 모델 개발 (Development of a Dialogue System Model for Korean Restaurant Reservation with End-to-End Learning Method Combining Domain Specific Knowledge)

  • 이동엽;김경민;임희석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.111-115
    • /
    • 2017
  • 목적 지향적 대화 시스템(Goal-oriented dialogue system)은 텍스트나 음성을 통해 특정한 목적을 수행할 수 있는 시스템이다. 최근 RNN(recurrent neural networks)을 기반으로 대화 데이터를 end-to-end learning 방식으로 학습하여 대화 시스템을 구축하는데에 활용한 연구가 있다. End-to-end 방식의 학습은 도메인에 대한 지식 없이 학습 데이터 자체만으로 대화 시스템 구축을 위한 학습이 가능하다는 장점이 있지만 도메인 지식을 학습하기 위해서는 많은 양의 데이터가 필요하다는 단점이 존재한다. 이에 본 논문에서는 도메인 특정 지식을 결합하여 end-to-end learning 방식의 학습이 가능한 Hybrid Code Network 구조를 기반으로 한국어로 구성된 식당 예약에 관련한 대화 데이터셋을 이용하여 식당 예약을 목적으로하는 대화 시스템을 구축하는 방법을 제안한다. 실험 결과 본 시스템은 응답 별 정확도 95%와 대화 별 정확도 63%의 성능을 나타냈다.

  • PDF

학습용이성 측면에서의 PC통신 소프트웨어 사용편이성 평가 연구

  • 윤철호
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1997년도 춘계학술대회논문집
    • /
    • pp.123-131
    • /
    • 1997
  • 이 연구에서는 서로 다른 사용자 인터페이스의 대화 방식에 따라 PC통신 소프트웨어 의 사용편이성이 어떻게 달라지는가를 살펴보고자 한다. 이를 위해 현재 국내에서 이 용되고있는 3개의 PC통신소프트웨어를 대상으로 남녀대학생 18명에 의한 사용편이성 평가 시험을 실시하였다. 시험은 강사에 의한 1:1 방식에 의해 실시하였다. 평가척도로 는 학습소요시간, 시험소요시간, 정답률을 이용하였다. 실험결과, 윈도우환경에서 구현 되는 메뉴, 아이콘, 명령어를 혼합한 대화방식의 소프트웨어보다도 도스환경에서 구현된 명령어 대화방식의 소프트웨어가 학습용이성 측면에서의 사용편이성이 높을 수 있다는 점이 시사되었다.

  • PDF

도메인 특정 지식을 결합한 End-to-End Learning 방식의 한국어 식당 예약 대화 시스템 모델 개발 (Development of a Dialogue System Model for Korean Restaurant Reservation with End-to-End Learning Method Combining Domain Specific Knowledge)

  • 이동엽;김경민;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.111-115
    • /
    • 2017
  • 목적 지향적 대화 시스템(Goal-oriented dialogue system) 은 텍스트나 음성을 통해 특정한 목적을 수행 할 수 있는 시스템이다. 최근 RNN(recurrent neural networks)을 기반으로 대화 데이터를 end-to-end learning 방식으로 학습하여 대화 시스템을 구축하는데에 활용한 연구가 있다. End-to-end 방식의 학습은 도메인에 대한 지식 없이 학습 데이터 자체만으로 대화 시스템 구축을 위한 학습이 가능하다는 장점이 있지만 도메인 지식을 학습하기 위해서는 많은 양의 데이터가 필요하다는 단점이 존재한다. 이에 본 논문에서는 도메인 특정 지식을 결합하여 end-to-end learning 방식의 학습이 가능한 Hybrid Code Network 구조를 기반으로 한국어로 구성된 식당 예약에 관련한 대화 데이터셋을 이용하여 식당 예약을 목적으로하는 대화 시스템을 구축하는 방법을 제안한다. 실험 결과 본 시스템은 응답 별 정확도 95%와 대화 별 정확도 63%의 성능을 나타냈다.

  • PDF

음성 에이전트 상호작용에서 선행 발화가 사용자 경험에 미치는 영향 - 스마트홈 맥락에서 대화 유형 조건을 중심으로 - (The Effect of Preceding Utterance on the User Experience in the Voice Agent Interactions - Focus on the Conversational Types in the Smart Home Context -)

  • 강예슬;나경화;최준호
    • 문화기술의 융합
    • /
    • 제7권1호
    • /
    • pp.620-631
    • /
    • 2021
  • 이 연구는 스마트 홈 환경에서 대화 주제 유형에 따라 음성 에이전트의 선행 발화 방식이 사용자 경험에 미치는 효과를 확인하고자 하였다. 과제 중심적 대화와 관계 중심적 대화의 두 가지 대화 유형을 바탕으로, 스마트 스피커의 발화 방식을 선행 발화와 후행 발화로 구분하여 네 가지 시나리오를 제작하였다. 온라인 실험을 진행하여 총 62명의 참가자를 발화 방식에 따라 두 그룹으로 나누어, 대화 유형의 두 가지 시나리오를 진행하게 하고, 호감도, 심리적 저항감, 지각된 지능의 사용자 경험 요인을 측정하였다. 실험 결과, 대화 유형 중 과제 중심적 대화에서 호감도의 주효과가 나타났고, 발화 방식에서 선행 발화에 대한 심리적 저항감의 주효과가 나타났다. 선행 발화 방식은 과제 중심적 대화에서 호감도와 지각된 지능을 높이는 효과를 보였다.

아바타의 공간 정보를 이용한 가상세계 커뮤니케이션 프레임워크 (A Virtual World Communication Framework Using Avatar Spatial Information)

  • 박수현;지승현;류동성;조환규
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제35권12호
    • /
    • pp.552-559
    • /
    • 2008
  • 인터넷 기술이 발달하고 다양한 온라인 서비스들이 생겨남에 따라 사람들 간의 인터넷 커뮤니케이션 방식도 크게 변하고 있다. 특히 최근 유행하고 있는 3차원 가상현실 세계를 이용한 다양한 채팅서비스들은 사용자가 대화 내용을 이해하기 쉽고 흥미를 느낄 수 있는 방향으로 현재도 꾸준히 발달하고 있으며, 현실성과 흥미를 더하기 위한 많은 기법들을 도입하고 있다. 하지만 3차원 가상현실 세계는 점점 더 발달하고 있는데 비해 채팅 방식은 2차원의 대화창이나 말풍선을 이용하고 있어 현실성을 떨어뜨릴 뿐만 아니라 다양한 변화를 주는데 그 한계를 가지고 있다. 본 논문은 실제 세계에서의 대화 방식에 기반을 둔 가상 세계 커뮤니케이션 프레임워크를 제안한다. 제안하는 커뮤니케이션 프레임워크는 사용자들 간의 시점과 거리 등 3차원의 공간 정보를 고려하여 현실세계와 유사한 대화방식을 제공할 수 있으며, 인공적인 채팅 기법이나 사용자의 입력을 최소화하면서 가상현실 세계에서의 커뮤니케이션 효과를 높일 수 있다. 또한 기존의 대화 내용 기록 방식에서 사용된 시간 정보와 함께 아바타의 공간 정보까지 고려함으로써 대화간의 질문/답변 관계를 그래프의 형태로 기록할 수 있으며, 이를 통하여 가상 세계 내의 대화 내용을 효율적으로 관리하는데 도움이 된다.

대화 데이터 증강에 기반한 도메인에 강건한 종단형 목적지향 대화모델 (Domain-robust End-to-end Task-oriented Dialogue Model based on Dialogue Data Augmentation)

  • 이기영;권오욱;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.531-534
    • /
    • 2022
  • 신경망 기반 심층학습 기술은 대화처리 분야에서 대폭적인 성능 개선을 가져왔다. 특히 GPT-2와 같은 대규모 사전학습 언어모델을 백본 네트워크로 하고 특정 도메인 타스크 대화 데이터에 대해서 미세조정 방식으로 생성되는 종단형 대화모델의 경우, 해당 도메인 타스크에 대해서 높은 성능을 내고 있다. 하지만 이런 연구들은 대부분 하나의 도메인에 대해서만 초점을 맞출 뿐 싱글 모델로 두 개 이상의 도메인을 고려하고 있지는 않다. 특히 순차적인 미세 조정은 이전에 학습된 도메인에 대해서는 catastrophic forgetting 문제를 발생시킴으로써 해당 도메인 타스크에 대한 성능 하락이 불가피하다. 본 논문에서는 이러한 문제를 해결하기 위하여 MultiWoz 목적지향 대화 데이터에 오픈 도메인 칫챗 대화턴을 유사도에 기반하여 추가하는 데이터 증강 방식을 통해 사용자 입력 및 문맥에 따라 MultiWoz 목적지향 대화와 오픈 도메인 칫챗 대화를 함께 생성할 수 있도록 하였다. 또한 목적지향 대화와 오픈 도메인 칫챗 대화가 혼합된 대화에서의 시스템 응답 생성 성능을 평가하기 위하여 오픈 도메인 칫챗 대화턴을 수작업으로 추가한 확장된 MultiWoz 평가셋을 구축하였다.

  • PDF

한국어 토큰-프리 사전학습 언어모델 KeByT5를 이용한 한국어 생성 기반 대화 상태 추적 (Korean Generation-based Dialogue State Tracking using Korean Token-Free Pre-trained Language Model KeByT5)

  • 이기영;신종훈;임수종;권오욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.644-647
    • /
    • 2023
  • 대화 시스템에서 대화 상태 추적은 사용자와의 대화를 진행하면서 사용자의 의도를 파악하여 시스템 응답을 결정하는데 있어서 중요한 역할을 수행한다. 특히 목적지향(task-oriented) 대화에서 사용자 목표(goal)를 만족시키기 위해서 대화 상태 추적은 필수적이다. 최근 다양한 자연어처리 다운스트림 태스크들이 사전학습 언어모델을 백본 네트워크로 사용하고 그 위에서 해당 도메인 태스크를 미세조정하는 방식으로 좋은 성능을 내고 있다. 본 논문에서는 한국어 토큰-프리(token-free) 사전학습 언어모델인 KeByT5B 사용하고 종단형(end-to-end) seq2seq 방식으로 미세조정을 수행한 한국어 생성 기반 대화 상태 추적 모델을 소개하고 관련하여 수행한 실험 결과를 설명한다.

  • PDF

Hybrid Code Network를 이용한 한국어 식당 예약 시스템 모델 (Korean Restaurant Reservation System Model Using Hybrid Code Network)

  • 이동엽;허윤아;임희석
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.57-59
    • /
    • 2017
  • 대화 시스템(dialogue system)은 텍스트나 음성을 통해 다양한 분야에서 특정한 목적을 수행할 수 있는 시스템이다. 대화 시스템을 구현하기 위한 방법으로 인공 신경망(neural network)을 기반으로한 end-to-end learning 방식이 제안되었다. End-to-end learning 방식을 이용한 식당 예약 시스템 모델의 학습을 위해 페이스북은 영어로 이루어진 식당 예약에 관련된 학습 대화 데이터셋(The 6 dialog bAbI tasks)을 구축하였다. 하지만 end-to-end learning 방식의 학습은 많은 학습 데이터가 필요하다는 단점이 존재하는데, 액션 템플릿(action template)의 정의를 통해 도메인 지식을 표현함으로써 일반적인 end-to-end learning 방식보다 적은 학습량으로 좋은 성능의 모델을 학습할 수 있는 Hybrid Code Network 구조를 제안한 연구가 있다. 본 논문에서는 Hybrid Code Network 구조를 이용하여 한국어 식당 예약 시스템을 구축할 수 있는 방법을 제안하고, 한국어로 이루어진 식당 예약에 관련한 학습 대화 데이터를 구축하는 방법을 제안한다.

  • PDF

BM25 기반 고난도 부정 지식 검색을 통한 오픈 도메인 지식 기반 한국어 대화의 지식 검색 모듈 성능 향상 (Improvement of Knowledge Retriever Performance of Open-domain Knowledge-Grounded Korean Dialogue through BM25-based Hard Negative Knowledge Retrieval)

  • 문선아;김산;신사임
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.125-130
    • /
    • 2022
  • 최근 자연어처리 연구로 지식 기반 대화에서 대화 내용에 자유로운 주제와 다양한 지식을 포함하는 연구가 활발히 이루어지고 있다. 지식 기반 대화는 대화 내용이 주어질 때 특정 지식 정보를 포함하여 이어질 응답을 생성한다. 이때 대화에 필요한 지식이 검색 가능하여 선택에 제약이 없는 오픈 도메인(Open-domain) 지식 기반 대화가 가능하도록 한다. 오픈 도메인 지식 기반 대화의 성능 향상을 위해서는 대화에 이어지는 자연스러운 답변을 연속적으로 생성하는 응답 생성 모델의 성능 뿐만 아니라, 내용에 어울리는 응답이 생성될 수 있도록 적합한 지식을 선택하는 지식 검색 모델의 성능 향상도 매우 중요하다. 본 논문에서는 오픈 도메인 지식 기반 한국어 대화에서 지식 검색 성능을 높이기 위해 밀집 벡터 기반 검색 방식과 주제어(Keyword) 기반의 검색 방식을 함께 사용하는 것을 제안하였다. 먼저 밀집 벡터 기반의 검색 모델을 학습하고 학습된 모델로부터 고난도 부정(Hard negative) 지식 후보를 생성하고 주제어 기반 검색 방식으로 고난도 부정 지식 후보를 생성하여 각각 밀집 벡터 기반의 검색 모델을 학습하였다. 성능을 측정하기 위해 전체 지식 중에서 하나의 지식을 검색했을 때 정답 지식인 경우를 계산하였고 고난도 부정 지식 후보로 학습한 주제어 기반 검색 모델의 성능이 6.175%로 가장 높은 것을 확인하였다.

  • PDF