• Title/Summary/Keyword: 대형평판재하시험

Search Result 12, Processing Time 0.014 seconds

Study of Ground Reinforced Effect using the Porous Geocell (다공성 지오셀을 이용한 지반 보강효과에 관한 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Kim, Young-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • The laboratory tests and field plate load test were carried out to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comparison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. The settlement and the distribution of deformation were also estimated by using the finite element method. The magnitude of settlements on the geocell-reinforced subgrade and unreinforced subgrade are 6.8cm and 1.2cm, respectively.

  • PDF

A Study on the Stability of Foundation for Piers of WoljungGyo Bridge Built in Ancient Silla (신라시대 교량 월정교 교각기초의 복원안정성 연구)

  • Lee, Kwang-Wu;Hong, Gigwon;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.273-286
    • /
    • 2019
  • A derelict bridge called WoljungGyo was restored in Gyeongju, the capital city of ancient Silla. WoljungGyo was originally built in 760AD, and later rebuilt in 1280AD during the Goryeo Kingdom. The bridge lasted in working condition for at least 520 years. The bridge was uncovered to the remains of both abutments and four piers, with only one or two steps remaining. One of the foundation for piers showed evidence of partial settlement. The cause of the partial settlement is important for the successful restoration of the bridge so that an extensive investigation was carried out, which includes layer stratification by boring, 2-D stiffness profiling by surface-wave tests, and large scaled-plate load test for evaluating capacity. In addition to the field studies in the Woljunggyo bridge, 3-D finite element analysis was also conducted. Based on the results of the site investigation and the numerical analysis, it was concluded that the further ground improvement to build the piers was not necessary so that the gravels were placed and leveled underneath the existing pier stones to compensate partial settlement before the restoration.