• Title/Summary/Keyword: 대형반복삼축압축시험

Search Result 7, Processing Time 0.021 seconds

Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test (대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가)

  • Lim, Yu-Jin;Kim, In-Tae;Kwak, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.41-50
    • /
    • 2011
  • It is well-known that pavement is easily damaged by several factors including permanent deformation and fatigue crack, causing service life of the pavement to be shorter than expected. It is very important to predict amount of permanent deformation for designing pavement and developing design method of pavement. A new model of permanent deformation of pavement materials based on concept of shear stress ratio has been proposed because the lower pavement materials are highly affected by shear strength of the material. In this study a large repetitive triaxial load test has been adapted for performing test of permanent deformation of crushed subbase materials. The test procedure which includes concept of shear stress ratio has been newly developed. Several important model parameters can be obtained from the test that can be used for making correct permanent deformation model of the material.

Test method for Young's Modulus of Parallel Graded Coarse Granular Materials by Large Triaxial Test (대형삼축압축시험을 이용한 상사입도 조정 재료의 탄성계수 산정시험)

  • Lee, Sung Jin;Choo, Yun Wook;Hwang, Su Beom;Kim, Ki Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.211-220
    • /
    • 2012
  • Coarse granular materials such as gravel, rubble is used as major fill materials in earth structures of railway, road and dam. Therefore, it is essential to accurately evaluate properties of these materials for reasonable design and construction. In the precedent study, we built large triaxial testing system and verified system compliance with a focus on the dynamic properties. And we could secured the reliability of the system. In this study, the cyclic triaxial tests were performed in various experimental conditions on coarse granular material. Two series of parallel graded samples are prepared by mixing crushed rock. The influence of grain size, loading pattern, loading frequency, and fine contents were analyzed and discussed.

Dynamic Properties for Geomaterials of Railway as Determined by Large-scale Cyclic Triaxial Test (대형삼축압축시험을 이용한 철도노반재료의 동적 물성 제안)

  • Lee, Sung Jin;Hwang, Su Beom;Lee, Su Hyung;Lee, Seong Hyeok;Kim, Ki Jae
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • In the earth structures of railways, large coarse granular materials are widely used as fill materials. However, experimental studies that consider the dynamic properties of these coarse granular materials have rarely been carried out in Korea due to the lack of a large scale test apparatus in this country. In this study, large scale cyclic triaxial tests were carried out for materials such as reinforced roadbed (subballast, graded crushed stone), transition zone gravel, and the upper subgrade of a railway. These specimens were prepared according to certain conditions (dry unit weight, grain size distribution, and so on) specified in the Korea railroad design standard. Based on these large triaxial test results, normalized shear modulus and damping ratio curves according to small strain level are suggested. A model and coefficients for each material are also proposed.

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Laboratory Test for Permanent Settlement Behavior of Geo-materials used in Railway Considering Grain size distribution and Water content (입도 및 함수비 조건에 따른 철도 노반 재료의 영구침하거동 요소시험평가)

  • Lee, Sung Jin;Lee, Il Wha;Lee, Su Hyung;Eum, Ki Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.354-362
    • /
    • 2015
  • Since allowable settlement of concrete slab track is about 30mm, a lot of attention must be paid to the settlement of the earthwork (reinforced trackbed, upper subgrade, under subgrade) under the concrete track. To this end, more experimental data should be accumulated through tests for these materials. In this study, we evaluate the long-term settlement of reinforced trackbed and subgrade materials using factors such as repeated loading conditions, water content, and grain size distributions in a large triaxial test and a large oedometer test. In cases in which the performance of the reinforced trackbed layer meets the design criteria, the settlement caused by train load was considerably small. But, when the water content increases in the subgrade, unexpectedly large settlement might occur for certain grain size distributions of the subgrade materials.

Study on Young's Modulus of Coarse Granular Materials with Grain Size Distribution Adjustment (입도조정된 조립재료의 탄성계수에 대한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Su-Hyung;Lee, Jin-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.47-55
    • /
    • 2013
  • In the element test for coarse granular materials, the grain size distributions of the materials are often adjusted, in case the grain size of coarse material in the field is larger than the available maximum grain size of the laboratory test equipment. In this study, we carried out the large cyclic triaxial test to evaluate the effect of the grain size distribution adjustment on Young's modulus in small to intermediate strain level. The test results showed that the coarse granular materials with the adjusted grain size distribution underestimated Young's modulus of the original materials. The difference of Young's modulus was larger in small strain level than in intermediate strain level.

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.