• Title/Summary/Keyword: 대표체적요소

Search Result 60, Processing Time 0.029 seconds

Scour Simulation by Coarse-Grained DEM Coupled with Incompressible SPH (비압축성 SPH와 Coarse-Grained DEM을 활용한 세굴 모사)

  • Kim, Jihwan;Lee, Ji-Hyeong;Jang, Hoyoung;Joo, Young Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.27-27
    • /
    • 2021
  • 세굴은 유체와 유사의 상호작용으로 발생하는 중요한 자연 현상 중 하나로, 구조 및 지반 붕괴, 홍수, 생태계 파괴 등의 문제를 야기할 수 있다. 이러한 세굴 현상을 예측하기 위해 많은 수치적 연구가 진행되어왔지만, 대부분의 연구가 기존 격자기반방법인 유한체적법 (FVM)과 개별요소법 (DEM)이 연성된 모델을 이용하였고, 이는 격자 의존도로 인한 정확도와 효율성의 문제점을 보였다. 해결책으로 입자기반 유체해석 방법인 약압축성 SPH (WCSPH)와 개별요소법의 결합모델을 이용한 모의가 연구되어 왔지만, 단순 밀도차를 활용한 유체해석방법이 압력의 불안정성을 야기하여 유사의 운동에도 영향을 주는 결과를 보였다. 또한, 개별요소법의 특성상 모의 입자의 크기를 실제 실험 입자의 크기와 동일하게 설정하면서 입자수가 지나치게 증가해 계산의 효율성이 현저히 낮아지게 되었고, 이로 인해 실제 자연 지형에 적용하는데 어려움을 보여주었다. 본 연구에서는 향상된 세굴 수치모의해석을 위해 반복법을 통해 안정적인 유체 압력을 계산하는 비압축성 SPH (ISPH)와 개별요소법을 연성한 ISPH-DEM 모델을 사용하였다. 또한, 계산속도 향상을 위해 하나의 입자가 다수의 작은 입자의 움직임을 대표하는 Coarse-grained 방법을 적용하여 기존 모델을 개선하였다. 개선된 모델을 NFLOW ISPH PURPLE 소프트웨어를 이용하여 세굴 현상을 수치 모의하였고 실험 결과와 검증을 진행한 결과, 세굴의 깊이, 너비, 형상 등을 비교하였을 때 약 10% 이내의 오차를 보였고, Coarse-grained 방법을 통한 입자 수 감소로 최소 13배 증가된 해석 속도를 보였다. 이를 통해 본 연구에서 제시된 모델이 실제 자연 지형에서의 적용가능성을 확인할 수 있었다.

  • PDF

Determination of Equivalent Hydraulic Conductivity of Rock Mass Using Three-Dimensional Discontinuity Network (삼차원 불연속면 연결망을 이용한 암반의 등가수리전도도 결정에 대한 연구)

  • 방상혁;전석원;최종근
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.52-63
    • /
    • 2003
  • Discontinuities such as faults, fractures and joints in rock mass play the dominant role in the mechanical and hydraulic properties of the rock mass. The key factors that influence on the flow of groundwater are hydraulic and geometric characteristics of discontinuities and their connectivity. In this study, a program that analyzes groundwater flow in the 3D discontinuity network was developed on the assumption that the discontinuity characteristics such as density, trace length, orientation and aperture have particular distribution functions. This program generates discontinuities in a three-dimensional space and analyzes their connectivity and groundwater flow. Due to the limited computing capacity In this study, REV was not exactly determined, but it was inferred to be greater than 25$\times$25$\times$25 ㎥. By calculating the extent of aperture that influences on the groundwater flow, it was found that the discontinuities with the aperture smaller than 30% of the mean aperture had little influence on the groundwater flow. In addition, there was little difference in the equivalent hydraulic conductivity for the the two cases when considering and not considering the boundary effect. It was because the groundwater flow was mostly influenced by the discontinuities with large aperture. Among the parameters considered in this study, the length, aperture, and orientation of discontinuities had the greatest influence on the equivalent hydraulic conductivity of rock mass in their order. In case of existence of a fault in rock mass, elements of the equivalent hydraulic conductivity tensor parallel to the fault fairly increased in their magnitude but those perpendicular to the fault were increased in a very small amount at the first stage and then converged.

Stochastic Strength Analysis according to Initial Void Defects in Composite Materials (복합재 초기 공극 결함에 따른 횡하중 강도 확률론적 분석)

  • Seung-Min Ji;Sung-Wook Cho;S.S. Cheon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.179-185
    • /
    • 2024
  • This study quantitatively evaluated and investigated the changes in transverse tensile strength of unidirectional fiber-reinforced composites with initial void defects using a Representative Volume Element (RVE) model. After calculating the appropriate sample size based on margin of error and confidence level for initial void defects, a sample group of 5000 RVE models with initial void defects was generated. Dimensional reduction and density-based clustering analysis were conducted on the sample group to assess similarity, confirming and verifying that the sample group was unbiased. The validated sample analysis results were represented using a Weibull distribution, allowing them to be applied to the reliability analysis of composite structures.

Safety Evaluation of Carbon Fiber/Epoxy Composite Link Using Micromechanics of Failure Criterion (미시역학적 파손 기준을 이용한 탄소섬유/에폭시 복합재 링크의 안전성 평가)

  • Jae Ho Cha;Sung Ho Yoon
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.154-161
    • /
    • 2023
  • This study explored the feasibility of replacing a metal link with a carbon fiber/epoxy composite link and assessed its capacity to withstand a given load condition using failure criteria. The micromechanics of failure (MMF) criterion was employed to predict the failure mode of the composite material, and mechanical tests were conducted to obtain reference strength parameters for MMF. The findings revealed that the stress distribution was concentrated near the hole, and weaknesses were found around the hole and at the end of the link under bending conditions. Based on the failure index, matrix tensile failure was predicted at the end of the link, and fiber compression failure occurred near the hole. The methods and results obtained from this study can provide valuable guidelines for assessing the safety of composite materials under specific load conditions when replacing metal parts with carbon fiber/epoxy composites to achieve weight reduction.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

Characteristics of Block Hydraulic Conductivity of 2-D DFN System According to Block Size and Fracture Geometry (블록크기 및 균열의 기하학적 속성에 따른 2-D DFN 시스템의 블록수리전도도 특성)

  • Han, Jisu;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.450-461
    • /
    • 2015
  • Extensive numerical experiments have been carried out to investigate effect of block size and fracture geometry on hydraulic characteristics of fractured rock masses based on connected pipe flow in DFN systems. Using two fracture sets, a total of 72 2-D fracture configurations were generated with different combinations of fracture size distribution and deterministic fracture density. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity for each generated fracture network system were calculated using the 2-D equivalent pipe network method. There exist significant effects of block size, orientation, density and size of fractures in a fractured rock mass on its hydraulic behavior. We have been further verified that it is more difficult to reach the REV size for the fluid flow network with decreasing intersection angle of two fracture sets, fracture plane density and fracture size distribution.

A Study on Comparison and Application of Numerical Models to Experiments in Discontinuous Rock Mass (불연속성 암반에서의 수치모델 검토 및 시험과의 비교.적용에 대한 연구)

  • 정교철
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • In general, there are various approaches available in literature to model discontinuous rock masses and engineers are often confused which one to use for designing structures in rock masses. Modelling rock masses can be classified mainly into two approaches. One is discrete modelling of intact rock and discontinuities and the other is the equivalent continuum modelling. In this study five models are selected ;(1) Crack tensor model, (2) Equivalent volume defect model, (3) Damage model, (4) Micro - structure model (Parallel model and Series model), and (5) Homogenization model. Most of these models are mainly concerned with how to define additional strain due to discontinuities over the representative elementary volume (REV) and how to relate the stress field of discontinuities to that acting on the REV. The characteristics of these models are clarified by comparing with results of some laboratory tests.

  • PDF

Estimation of Conductivity Tensor of Fractured Rocks from Single-hole Packer test (단정 주입시험 결과를 이용한 단열암반의 수리전도도 분석)

  • 장근무;이은용;김창락;이찬구;김현주
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A three-dimensional discrete fracture network model based on probabilistic characteristics of fracture geometry and transmissivity was designed to calculate the conductivity tensor and to estimate theanisotropy of conductivity. The conductivities, $K_p$, obtained from the numerical simulation of single-holepacker test corresponded well to those from the field tests. From this, it can be concluded that thefracture network model designed in this study can represent hydraulic characteristics of in-situ fractured rock mass. Block-scale conductivities, $K_b$, estimated from the modelling of steady-state flow through the REV-scale block were ranged between the arithmetic mean and harmonic mean of theconductivity estimates from packer tests. The conductivity along north-south direction was 1.4 timesgreater than that along the east-west direction. It was concluded that the anisotropy of conductivitywas insignificant. It was also found that there was a little correlation between $K_b$ and $K_p$. This would be to that the conductivities from the packer test simulation was strongly dependent on thetransmissivity and the number of fractures within the packer test intervals.

  • PDF

Analysis of Relationship between 2-D Fabric Tensor Parameters and Hydraulic Properties of Fractured Rock Mass (절리성 암반의 이차원 균열텐서 파라미터와 수리적 특성 간의 상관성 분석에 관한 연구)

  • Um, Jeong-Gi;Han, Jisu
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • As a measure of the combined effect of fracture geometry, the fabric tensor parameters could quantify the status of the connected fluid flow paths in discrete fracture network (DFN). The correlation analysis between fabric tensor parameters and hydraulic properties of the 2-D DFN was performed in this study. It is found that there exists a strong nonlinear relationship between the directional conductivity and the fabric tensor component estimated in the direction normal to the direction of hydraulic conductivity. The circular radial plots without significant variation of the first invariant ($F_0$) of fabric tensor for different sized 2-D DFN block are a necessary condition for treating representative element volume (REV) of a fractured rock mass. The relative error (ER) between the numerically calculated directional hydraulic conductivity and the theoretical directional hydraulic conductivity decreases with the increase in $F_0$. A strong functional relation seems to exist between the $F_0$ and the average block hydraulic conductivity.

Restoration of Local Community Based on Apartment Residential Space (아파트 주거공간에 기초한 지역공동체 형성에 관한 연구)

  • Yim, Seok-Hoi;Lee, Chul-Woo;Jeon, Hyeong-Soo
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.3
    • /
    • pp.314-328
    • /
    • 2003
  • This study aims at exploring the restoration of local community based on apartment residential space through the questionnaire survey of residents and community movement organizers. Apartment residential space has a serious limit to the restoration of local community due to the physical feature of closing compartment. But, at the same time, it has many communal elements as well. The survey shows that residential community movements are developing beyond compensatory community movement, although it is yet to be an ideal type of local community in a nonnative sense. Generally, apartment women's associations, together with the representative commission of residents, play a key role in residential community movements. Particularly, community movement activities have a positive effect on improving the neighborhood relationship. Residents themselves think so as well. This study implies the value and possibility of apartment residential movement as an alternative strategy against contemporary urban problems.

  • PDF