• 제목/요약/키워드: 대표점 교차검증

검색결과 4건 처리시간 0.018초

후보점과 대표점 교차검증에 의한 순차적 실험계획 (Candidate Points and Representative Cross-Validation Approach for Sequential Sampling)

  • 김승원;정재준;이태희
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.55-61
    • /
    • 2007
  • Recently simulation model becomes an essential tool for analysis and design of a system but it is often expensive and time consuming as it becomes complicate to achieve reliable results. Therefore, high-fidelity simulation model needs to be replaced by an approximate model, the so-called metamodel. Metamodeling techniques include 3 components of sampling, metamodel and validation. Cross-validation approach has been proposed to provide sequnatially new sample point based on cross-validation error but it is very expensive because cross-validation must be evaluated at each stage. To enhance the cross-validation of metamodel, sequential sampling method using candidate points and representative cross-validation is proposed in this paper. The candidate and representative cross-validation approach of sequential sampling is illustrated for two-dimensional domain. To verify the performance of the suggested sampling technique, we compare the accuracy of the metamodels for various mathematical functions with that obtained by conventional sequential sampling strategies such as maximum distance, mean squared error, and maximum entropy sequential samplings. Through this research we team that the proposed approach is computationally inexpensive and provides good prediction performance.

계층적 군집분석(최단, 최장, 평균, 중앙연결)방법에 의한 아시아 컨테이너 항만의 클러스터링 측정 및 실루엣방법과 2단계(Type II) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구 (A Study on the Asia Container Ports Clustering Using Hierarchical Clustering(Single, Complete, Average, Centroid Linkages) Methods with Empirical Verification of Clustering Using the Silhouette Method and the Second Stage(Type II) Cross-Efficiency Matrix Clustering Model)

  • 박노경
    • 한국항만경제학회지
    • /
    • 제37권1호
    • /
    • pp.31-70
    • /
    • 2021
  • 본 논문에서는 계층적 군집모형(최단, 최장, 평균, 중앙연결), 실루엣방법, 2단계(Type II) 교차효율성 메트릭스 군집모형으로, 아시아 38개 컨테이너항만 들의 2009년부터 2018년까지의 자료와 선석길이, 수심, 총면적, 크레인 수를 투입물, 컨테이너화물처리량을 산출물로 하여 국내대표 컨테이너항만 들(부산, 인천, 광양항)이 클러스터링 해야만 하는 항만들을 적출해 내는 측정방법을 보여 주고 비교, 분석, 검증하였다. 실증분석의 주요한 결과는 다음과 같다. 첫째, 10년간의 자료를 이용한 분석에서 클러스터링 후의 효율성의 증가가 큰 순서대로 살펴보면 실루엣(0.4052 증가), 계층적 군집분석(0.3097 증가), 2단계(Type II) 교차효율성(0.1057 증가)의 순서로 나타났다. 둘째, 실루엣모형과 2단계(Type II)교차효율성 모형에 의한 국내항만들의 클러스터링을 살펴보면 부산항은 8번(두바이), 11번(홍콩), 17번(탄중프리옥)항과 클러스터링 되고, 인천항과 광양항은 대부분의 항만들과 클러스터링 해야만 하는 것으로 나타났다. 셋째, 윌콕슨 부호순위 검정결과를 보면 평균적으로 보았을 때, P값(유의확율)이 평균 0.852 수준에서 모형들의 평균효율성 수치에 의한 순위가 서로 일치함을 보여 주었다. 넷째, 정치경제학적인 측면에서 아세안 항만들과 국내 항만들과 가장 클러스터링 횟수가 많은 항만들을 살펴보면, 부산항은 싱가포르 항만, 인천항은 탄중프리옥, 탄중퍼락, 마닐라,다바오,방콕항만, 광양항은 탄중프리옥, 탄중퍼락, 포트 클랑, 마닐라, 싱가포르, 림찬방, 방콕항만들과 클러스터링 하는 것이 좋을 것으로 나타났다. 또한 중국과 일본의 항만들과의 클러스터링을 고려해 보면, 부산항은 홍콩, 상해, 광저우, 도쿄 요코하마, 고베, 나고야, 오사카항, 인천항은 닝보, 칭타오, 도쿄, 요코하마, 고베, 나고야, 오사카항, 광양항은 홍콩, 상해, 도쿄 요코하마, 고베, 나고야, 오사카 항들과 클러스터링 하는 것이 좋은 것으로 나타났다. 다섯째, 본 연구에서 사용한 모형들과 기존연구들과의 타 모형들과의 검증에서는 실루엣 모형이 가장 크게 효율성을 증진시키는 것으로 검증되었다. 본 논문이 제안하고 있는 정책적인 측면의 의미는 항만정책입안자, 항만운영관리자들이 본 연구에서 사용한 모형들을 항만의 클러스터링에 도입하여 벤치마킹항만들을 선정해야만 하고, 그들 항만들의 항만개발, 운영방안 등에 대한 내용을 비교·분석하고 벤치마킹이 필요한 부분은 신속하게 도입하여 실시하는 것이 필요하다는 점이다.

이미지 색상, 명도, 채도 감성컴퓨팅의 유사성 검증 연구 (Image Color, Brightness, Saturation Similarity Validation Study of Emotion Computing)

  • 이연란
    • 만화애니메이션 연구
    • /
    • 통권40호
    • /
    • pp.477-496
    • /
    • 2015
  • 사람의 이미지 감성인식은 각기 다른 성향으로 표현된다. 현재는 감성인식을 객관적으로 평가하려는 감성컴퓨팅 연구가 활발하게 연구되고 있다. 그렇지만 기존의 감성컴퓨팅 연구는 실행에 많은 문제점을 갖고 있다. 첫째, 감성인식 면에서 비객관적이고, 부정확하다. 둘째, 감성인식의 상관관계가 불명확한 점이다. 그리하여 본 연구의 필요성으로 이미지 감성의 규칙성을 실험하여 감성컴퓨팅 방식으로 제어하고자 한다. 또한 본 연구의 목적으로 감성인식을 숫자화하고, 객관화하는 이미지 감성컴퓨팅 시스템 방식을 적용하고, 사람의 감성과의 유사 정도를 비교한다. 이미지 감성컴퓨팅 시스템의 주요 특징은 감성인식을 숫자화 된 디지털 형식으로 계산한다. 그리고 감성컴퓨팅의 연구배경은 감성을 디지털화하는 James A. Russell의 핵심 효과(Core Affect)를 활용한다. 핵심 감성으로 쾌정도(X축)인 쾌와 불쾌, 긴장도(Y축)인 긴장과 이완의 감성축이고, 감성컴퓨팅 연구에 적용한다. 감성축은 연관된 대표감성으로 아주 기쁜, 흥분, 의기양양, 행복한, 자족, 고요한, 여유로운, 조용한, 피곤한, 무기력한, 우울한, 슬픈, 화가 난, 스트레스, 불안, 긴장된 감성의 16개로 구분하여 감성컴퓨팅에 적용한다. 본 연구의 과정은 이미지 감성컴퓨팅 계산식의 핵심인 색채 요소를 활용하여 색상, 명도, 채도를 감성속성요소로 적용한다. 감성속성요소는 중요도인 가중치를 적용하여 비율을 계산하고, 쾌정도(X축)와 긴장도(Y축)의 감성점수로 측정한다. 다시 교차된 감성점을 바탕으로 감성원으로 확장하고, 포함된 대표감성크기로 상위 5위인 주요대표감성으로 선별한다. 또한 사람의 이미지 감성을 16개 대표감성점수로 측정하고, 상위 5위의 대표감성으로 구분한다. 연구결과 감성컴퓨팅의 주요대표감성과 사람의 감성인식의 주요대표 감성을 비교하여 일치하는 대표감성수에 따라 감성의 유사 정도를 검증한다. 감성컴퓨팅 유사성 실험 결과 주요대표감성의 평균 일치율은 51%이고, 2.5개의 대표감성이 사람의 감성인식과 일치했다. 본 연구를 통해 감성컴퓨팅 계산 방식과 사람 감성인식의 유사 정도를 측정했고, 감성계산식의 객관적인 평가기준을 제시했다. 향후 연구에서는 좀 더 높은 일치율 향상의 방안과 감성계산식의 가중치 연구가 유지되어야 할 것이다.

K-Means 군집모형과 계층적 군집(교차효율성 메트릭스에 의한 평균연결법, Ward법)모형 및 혼합모형을 이용한 컨테이너항만의 클러스터링 측정에 대한 실증적 비교 및 검증에 관한 연구 (An Empirical Comparison and Verification Study on the Containerports Clustering Measurement Using K-Means and Hierarchical Clustering(Average Linkage Method Using Cross-Efficiency Metrics, and Ward Method) and Mixed Models)

  • 박노경
    • 한국항만경제학회지
    • /
    • 제34권3호
    • /
    • pp.17-52
    • /
    • 2018
  • 본 논문에서는 K-Means 군집모형과 계층적 군집모형, 혼합모형으로, 아시아 38개 컨테이너항만 들의 2006년부터 2015년까지의 자료와 선석길이, 수심, 총면적, 크레인 수를 투입물, 컨테이너화물처리량을 산출물로 하여 국내대표 컨테이너항만 들(부산, 인천, 광양항)이 클러스터링 해야만 하는 항만들을 적출해 내는 측정방법을 보여 주고 비교, 분석, 검증하였다. 실증분석의 주요한 결과는 다음과 같다. 첫째, 10년간의 자료를 이용한 분석에서 클러스터링 후의 효율성 증가폭이 큰 순서대로 살펴보면 평균연결법[average linkage(AL)]은 42.04% 상승, Mixed Ward는 35.01% 상승, 경험법칙[rule of thumb(RT)]&Elbow는 30.47% 상승, Ward는23.65% 상승, Mixed AL는 23.25% 상승의 순서였다. 둘째, RT와 Elbow모형에 의한 국내항만들의 클러스터링을 살펴보면 (1)부산항은 두바이, 홍콩, 광저우, 칭타오, 포트 클랑, 싱가포르, 림찬방 (2)인천항은 하이파, 포트슐탄 카부스, 담만, 크호르 파칸, 탄중프리옥, 탄중퍼락, 동경, 나고야, 오사카, 카라치, 오아심, 마닐라, 다바오, 콜롬보, 킬롱, 방콕, (3)광양항은 아카바, 크호르 파칸, 광정우, 닝보, 칭타오, 포트 클랑, 카오슝, 림찬방 항과 클러스터링 해야만 하는 것으로 나타났다. 셋째, 최적 군집 수를 살펴보면 AL(6개), Mixed Ward(5개), RT&ELBOW (4개), Ward(5개), Mixed AL(6개)가 최적 군집 수인 것으로 나타났다. 넷째, 전문가 그룹에 의해서 선호되는 항만들과 본 실증분석결과에 의해서 도출된 국내항만들의 클러스터링 되는 항만들과의 일치성 여부는 부산항은 80%, 인천항은 17%, 광양항은 50%수준에서 일치하는 것으로 검증되었다. 본 논문이 제안하고 있는 정책적인 측면의 의미는 첫째, 항만정책입안자, 항만운영관리자들이 본 연구에서 사용한 모형들을 항만의 클러스터링에 도입하여 벤치마킹항만들을 선정해야만 한다. 둘째, 실증분석의 결과로서 도출된, 국내항만들의 참조항만, 클러스터링항만들에 대하여, 그들 항만들의 항만개발, 운영방안 등에 대한 내용을 비교 분석하고 벤치마킹이 필요한 부분은 신속하게 도입하여 실시하는 것이 필요하다는 점이다.