• Title/Summary/Keyword: 대체 응집제

Search Result 43, Processing Time 0.018 seconds

Antimicrobial Activity of Salvia miltiorrhiza Bunge Extract and Its Effects on Quality Characteristics in Sulgidduk (단삼 추출물의 향균 활성 및 첨가 설기떡의 품질 특성)

  • Choi, Hae-Yeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.3
    • /
    • pp.321-331
    • /
    • 2009
  • In this study, Salvia miltiorrhiza Bunge(Danshen) powder was extracted with ethanol, and its antimicrobial activity was investigated. The ethanol extract of the Danshen had antimicrobial activity against Bacillus subtilis, Escherichia coli, and Staphylococcus aureus. The inhibition zones of the Danshen extract(3 mg/disc) against B. subtilis, E. coli and S. aureus were 13, 12 and 8.5 mm, respectively. To test the food preservation effect of Danshen and determine the optimal ratio of the Danshen extract in a formulation, Sulgidduk samples were prepared with substitutions of 0, 0.25, 0.5, 0.75 and 1% Danshen extract, and then their quality characteristics were investigated over 4 days of storage. According to the results, total cell counts showed a decreasing trend with an increasing amount of added Danshen extract. Moisture contents were not significantly different among the Sulgidduk samples. As the content of Danshen extract increased, the L-values of samples decreased and the a- and b- values increased. For the textural characteristics, the hardness, gumminess, and chewiness of the Sulgidduk samples decreased as the amount of Danshen extract increased; however, they increased with the progression of storage time. In the sensory evaluation, the control group had significantly higher scores for color, flavor and after-taste as compared to the Danshen extract-added groups. With increasing Danshen extract contents, flavor and overall acceptability decreased, while Danshen flavor, bitterness and off-flavor increased. Chewiness was not significantly different among the samples. In conclusion, the results indicate that substituting 0.5% Danshen extract in Sulgidduk is optimal for quality and provides a product with reasonably high overall acceptability.

COMPARISON OF MICROTENSILE BOND STRENGTH OF COMPOSITE RESTORATION TO ERODED ENAMEL BY SURFACE TREATMENT (접착제의 종류에 따른 침식치아에 대한 복합레진의 결합강도)

  • Lee, Soon-Young;Lee, Kyung-Ho;Noh, Hong-Seok;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Composite resin has been widely used for eroded enamel. But, as there have been many reports about the differences in physicochemical characteristics of eroded enamel compared with sound enamel, an additional effort was thought necessary to obtain the optimal bond strength. As a possible answer, we came to think about the application of infiltrant resin which is known to have an excellent penetration capacity into enamel. This study was performed for the purpose of comparing the bond strength of composite restoration with or without infiltrant resin under adhesives on the artificially eroded enamel. 60 extracted sound maxillary primary incisors were selected and divided into group 1, 2, 3 according to the number of artificial erosion cycling for 5 minute duration in 1% citric acid of pH 3.2 at $37^{\circ}C$. And the labial surfaces were divided into 3 areas; group A, only resin adhesive was used, group I, only infiltrant resin, group IA, infiltrant resin followed by resin adhesive. Afterwards, every specimen was restored with composite resin. Microtensile bond strength was measured and failure modes were observed. The obtained results were as follows: 1. In comparing the bond strength by the degree of enamel erosion, it was revealed the highest bond strength in group 1, followed by group 2 and 3, showing the lowest bond strength in most eroded group(p<0.05). 2. In comparing the bond strength by surface treatment methods, group IA and I showed higher value than group A(p<0.05), with unsignificant difference between group I and IA(p>0.05). 3. In observation of failure mode, it was shown higher frequency of cohesive failure in order of 1-2-3 and IA-I-A. Conclusively, it was shown decreasing tendency of bond strength as the enamel is more eroded, and infiltrant resin was thought helpful to replace or add to the resin adhesive for optimal bonding with eroded enamel.

Varietal and Locational Variation of Grain Quality Components of Rice Produced in Hilly and High Altitude Areas in Korea (중산간지와 고냉지산 쌀 형태 및 이화학적특성의 품종 및 산지간 변이)

  • Choi, Hae-Chune;Chi, Jeong-Hyun;Lee, Chong-Seob;Kim, Young-Bae;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.27-37
    • /
    • 1994
  • To catch the relative importance of varietal and environmental variation in various grain quality components associated with palatability of cooked rice, grain appearance, milling recovery, several physicochemical properties of milled rice and texture or eating quality of cooked rice for rice materials of five japonica cultivars, produced at four locations of the mid-mountainous and alpine area of Korea in 1989, were evaluated and analyzed the obtained data. Highly significant varietal and locational variations were detected in 1000-grain weight, amylose content, K/Mg ratio, gelatinization temperature, peak viscosity, breakdown and setback viscosities as compared with variety x location interaction variation. Also, marked locational variations were recongnized in milling recovery from rough to brwon rice, alkali digestibility and protein content, and significant varietal variation was caught in stickiness /hardness ratio of cooked rice. The variety x location interaction variation was especially large in quality components of grain appearance and ripening, palatability of cooked rice and consistency viscosity. One thousand kernel weight was heaviest in Jinbuolbyeo and Odaebyeo, and the unfilled grain ratio was lowest in Jinbuolbyeo. Odaebyeo showed slightly' lower ratio of intact and clear milled rice because of more chalky rice kernels compared with other cultivars. Amylose content of Jinbuolbyeo and Sobaegbyeo was about 1% lower than that of others and K/Mg ratio of Odaebyeo was the lowest one among rice materials. Odaebyeo, Sobaegbyeo and Jinbuolbyeo revealed significantly low gelatinization temperature and setback viscosity while high peak and breakdown viscosities. Cholwon rice showed the greatest kernel weight, good grain filling but lowest ratio of intact and clear milled rice while Jinbu rices exhibited the highest milling recovery from rough to brown rice and ratio of sound milled rice. Amylose content of milled rice in Jinbu rices was about 2-3% lower than those in other locations. Protein content of polished rice was about 1% lower in rice materials of middle zone than those of southern part of Korea. K/Mg ratio of milled rice was highest in Jinbu rice and potassium content was slightly higher in the rice materials of middle region than in those of southern region. Alkali digestion value and gelatinization temperature of polished rice was markedly high in Jinbu rices as compared with other locations. Breakdown viscosity was hightest in Chlown rices and next higher with the order of Hwaso>Unbong>Jinbu rices, and setback viscosity was the quite contrary tendency with breakdown. The stickiness /hardness ratio of cooked rice was relatively higher value in Cholwon rices than in the others and the palatability of cooked rice was a little better in Unbong and Cholwon rices than in Jinbu and Hwaso rices, although variety x location interaction variation was large. The rice materials can be classified largely into two groups of Jinbu and the others by the distribution on the plane of 1st and 2nd principal components (about 60% of total informations) contracted from twelve grain quality properties closely associated with eating quality of cooked rice. Also, Jinbu and the other rices were divided into two and three rice groups respectively. Varietal variation of overall rice quality was smallest in Hwaso. The most superior rice group in overall quality evaluation included Odaebyeo produced at Cholwon, Unbong and Hwaso, and Sobaegbyeo grown at Unbong

  • PDF