• Title/Summary/Keyword: 대체 브라켓

Search Result 14, Processing Time 0.022 seconds

An Experimental Study on Sidewalk on the Bridge Bracket Section to Optimize (교량 보도부 브라켓 단면의 최적화를 위한 실험적 연구)

  • Park, Sungrak;Oh, Hongseob;Nam, Kiwook
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.158-158
    • /
    • 2011
  • 통상 교량구조물은 차도부와 보도부 및 그 부속시설로서 난간 및 연석부 등으로 구성되는데, 자동차 전용도로의 경우 보도부가 설치되지 않게 되고, 국내의 국도 및 지방도상의 많은 교량이 차도부와 보도부의 별도의 구분이 없이 보행자가 연석부 위로 통행하거나 여의치 않을 경우 난간에 기대어 통행하는 경우가 일반적이어서 안전사고의 위험에 직접 노출되는 경우가 많다. 이에 국토해양부에서는 최근 "도로의 구조 및 시설기준에 관한 규칙"을 개정하여 국내의 보행자 관련 교통사고로 인한 사망자가 전체 교통사고 사망자의 약 절반을 차지하는 실정을 고려하여 보행자의 안전한 통행로 확보를 통해 보행공간의 근본적인 개선이 불가피한 실정임을 시사 하였다. 이에 국내에서는 교량 보도부의 확장에 대한 관심이 높은 실정이며, 현재 보도부 확장에 대한 시공이 활발하게 이뤄지고 있다. 그러나 기존 교량에 보도부를 신설 혹은 확장함에 있어서 보도부 부재의 설치 간격 및 필요한 앵커볼트의 수량 및 부재의 성능 평가에 대한 기준이 명확하게 이뤄지지 않은 상태에서 설치되어져 왔었다. 기존에 시공되던 H-형강의 브라켓 단면의 경우 브라켓 단면의 중량이 커서 안정성 및 시공성이 떨어지며 과다한 앵커볼트의 체결 및 브라켓 단면의 과다설계로 인한 공사기간 및 비용의 증대를 가져오는 문제점이 있었다. 이에 본 연구에서는 교량 보도부의 확장 및 신설에 있어서 보도부 부재의 설치간격의 적정성 및 브라켓의 최적화를 위한 브라켓의 성능평가 시험을 수행하였다. 브라켓의 성능평가 시험은 1차 2차 3차 시험으로 나누어 진행되었으며, 1차시험은 H-형강의 브라켓단면을 원형강관으로서의 대체 가능성을 확인하였고, 2차 시험에서는 원형강관의 브라켓 단면의 앵커볼트수량의 최적화에 대한 시험을 수행하였으며, 3차 시험은 최적화된 브라켓 단면에 프리스트레싱의 도입으로 반력 및 인발력의 감소효과를 확인하는 연구를 수행하였다. 본 연구의 수행결과 기존의 설계 및 시공방법이 과다 설계가 이뤄졌음을 판단하였고, 브라켓 단면의 최적화를 통하여 기존 시공방법에 비해 시공성, 안전성, 경제성을 높일수 있을 것으로 판단된다.

  • PDF

Friction of calcium phosphate brackets to stainless steel wire (인산칼슘재 브라켓과 강선사이의 마찰저항에 관한 연구)

  • Joo, Hyo-Jin;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.37 no.5
    • /
    • pp.376-385
    • /
    • 2007
  • Esthetic brackets which resemble the color of natural teeth have been widely used. But the frictional resistance of ceramic brackets, a typical esthetic bracket, is greater than that of metal brackets. The purpose of this study was to measure the frictional resistance of the new calcium phosphate brackets (CPB) which were recently developed and to evaluate its clinical usability by comparing the frictional differences of CPB with metal brackets and metal slot inserted ceramic brackets. Methods: Experimental groups were CPB (Hyaline II, Tomy, Tokyo, Japan), metal bracket (Kosaka, Tomy, Tokyo, Japan) and metal slot inserted ceramic bracket (Clarity, 3M Unitek, Monrovia, CA, USA). All of the brackets had 0.022-inch slot sizes. The brackets were tested with $0.019\;{\times}\;0.025$ inch stainless steel wire (3M Unitek, Monrovia, CA, USA). A biologic model was used to simulate the situation which would occur during orthodontic treatment with fixed appliances. Retraction force was applied at a speed of 5 mm/min for 30 seconds. The frictional resistance was measured on a universal testing machine (Instron 4467, Instron, Norwood, MA, USA). Results: CPB showed significantly higher friction than metal brackets (p < 0.05) and lower friction than metal slot inserted ceramic brackets (p < 0.01). Conclusions: CPB can be considered to be a useful orthodontic esthetic bracket with respect to frictional resistance, as its friction is remarkably lower than that of metal slot inserted ceramic brackets.

Tensile Bond Strength of Glass Ionomer Cements (글라스 아이오노대 시멘트의 인장접착강도)

  • BYUN, Seung Min;KWON, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 1996
  • This study was conducted to evaluate the tensile bond strength of three commercially available glass ionomer cements as orthodontic bracket adhesives. 120 premolars extracted for orthodontic treatment were prepared for bonding and standard edgewise brackets were bonded with Shofu Glaslonomer Cement (Shofu Co., U.S.A.), GC Fuji ItGC Co., Japan), KETAC-CEM(ESPE Co., West Germany) with different P/L ratio. The tensile bond strength was tested by Instron testing device after 24hours and 3months from bonding. After debracketing, bracket bases were examined to determine the failure sites. The results of this study were as follows: 1. KETAC CEM showed the highest bond strength other than measurement after 24 hours and at its original P/L ratio, and seemed to have clinically a proper bond strength. It seemed, however, that both Shofu Giaslonomer Cement and GC Fuji I had an inappropriate bond strength. 2. The incorporation of additional powder into the mixture improved the tensile bond strength. 3. Prolonged storage time improved the tensile bond strength. 4. Of the failure, failure occured at the tooth-adhesive interface(54.2%) was the most common type. The second type of failure(36.7%) was combination type, where part of the adhesive remained on the tooth and part on the bracket. And the last type of failure(9.1%) occured at the adhesive-bracket interface.

  • PDF

THE EFFECTS OF CRYSTAL GROWTH ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET ADHESIVES TO ENAMEL SURFACE (Crystal growth에 의한 법랑질 표면처리가 교정용 브라켓 접착제의 전단결합강도에 미치는 영향)

  • Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.839-852
    • /
    • 1997
  • It has been submitted that different ion solutions containing sulfate induce crystal growth and might substitute conventional acid etching for pretreatment of enamel in orthodontic bonding(${\AA}rtun$ et al., Am. J. Orthod. 85, 333, 1984). This investigation was designed to evaluate the relevance of crystal growth on the enamel surface as an alternative to conventional acid etching in direct bonding of orthodontic brackets. Annexing Li2SO4, MgSO4, K2SO4 respectively in the solution with $25\%$ polyacrylic md 0.3M sulfuric acids were employed to enhance the crystal growth. Human bicuspids were treated with various parameters as combinations of crystal growth and glass ionomer cement, crystal growth and orthodontic resin, acid etching and orthodontic resin for an investigative purpose. Crystal growth solution containing MgSO4 showed the highest shear bond strength(15.6MPa) within the groups of bonding brackets with glass ionomer cement(p<0.01). Bonding with glass ionomer cement on the surface of crystal growth demonstrated higher shear bond strength than with orthodontic resin(p<0.001). Bonding with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 was not different shear bond strength statistically from bonding with orthodontic resin on the acid-etched surface. It suggests that bonding brackets with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 is a potential alternative to bonding with resin on the acid etched sufrace.

  • PDF

A COMPARATIVE STUDY ON SHEAR BOND STRENGTHS INFLUENCED BY TIME ELAPSED AFTER BRACKET BONDING WITH A LIGHT-CURED GLASS IONOMER CEMENT (광중합형 글래스아이오노머 시멘트의 브라켓 접착후 시간 경과에 따른 전단결합강도의 비교연구)

  • Lee, Ki-Soo;Lim, Ho-Nam;Park, Young Guk;Shin, Kang-Seob
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.605-611
    • /
    • 1995
  • The purpose of this study was to evaluate effects of time on shear bond strengths of a light-cured glass ionomer cement and chemically cured resin cement to enamel, and to observe the failure patterns of bracket bondings. Shear bond strength of a light-cured glass ionomer cement were compared with that of a resin cement. Metal brackets were bonded on the extracted human bicuspids. Specimens were subjected to a shear load(in an Instron machine) after storage at room temperature for 5 and 15 minutes; after storage in distilled water at $37^{\circ}C$ for 1 or 35 days. The deboned specimens were measured In respect of adhesive remnant index. The data were evaluated and tested by ANOVA, Duncan's multiple range test, and t-test, and those results were as follows. 1. The shear bond strength of light-cured glass ionomer cement is higher than that of resin cement at 5 and 15 minutes. 2. The shear bond strengths of both light-cured glass ionomer cement and resin cement increase with time. There was no significant difference in those of both 1 day group and 35 day group 3. Light-cured glass ionomer cement is suitable as orthodontic bracket adhesives

  • PDF

Structural Performance and CO2 Reduction Evaluation of the Ultra simple Wide-shaped section Beam-to-Column Weak Axis Connection (초간편 H형강 기둥-보 약축접합부의 구조성능 및 CO2 저감량 평가)

  • Kim, Sang-Seup;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.615-627
    • /
    • 2011
  • There have been few researches on the connection technology for steel structures, so the research outputs and the outcome of the technology development are still insufficient. The bracket-type connection should be improved for efficient constructability and $CO_2$ reduction. It should be replaced by a new type of weak-axis connection that has better structural performance and less $CO_2$ emission. Since the structural performance and safety of the new type of weak-axis connection must first be verified, however, a study on $CO_2$ reduction will be conducted. Therefore, this study looked into the structural performance of the bracket-type details, standard details, and ultra-simple details. It evaluated the requirements for connection materials and $CO_2$ emission. It was found that the ultra-simple weak-axis connection has thebest structural performance and the least $CO_2$ emissions, so it is deemed capable of replacing the bracket-type weak-axis connection.

On the Design of the Brackets without Flange in Ships' Structure (플랜지가 없는 선체 브라켓의 설계에 관한 연구)

  • Lee, Joo-Sung;Lee, Dong-Bu;Han, Doo-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.197-205
    • /
    • 2006
  • In general, brackets found at tank boundary are design according to the Classification Society Rule. Since much man power is needed in manufacturing the brackets stiffened by flange, it is necessary to suggest alternative designs, of which flanges are removed, through the rigorous structural analysis. In this paper non-linear structural analysis for brackets with and/or without flange have been carried out to examine their structural behavior and ultimate strengths. Alternative designs for brackets are suggested based on the results of ultimate strength analysis so that the alternative brackets have the similar level of strength and stiffness to the original brackets. It has been seen that the structural safety of alternative brackets proposed in this paper are beyond the appropriate level. The primary benefit of replacing the original brackets by the alternatives is the reduction of man power in manufacturing brackets and 10 to 15% weight saving can be expected in additional. This paper ends with some comments about the extension of the present study.

An in vitro study of a few crystal growth solutions on the bracket shear bond strength (수종의 실험 결정형성용액에 의한 브라켓 전단결합강도의 비교)

  • Jeon, Yun-Ok;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.613-625
    • /
    • 1999
  • The purpose of this study was to compare the bracket shear bond strengths of the crystal growth solutions with those of the $37\%$ phosphric acid etch technique. The 4 crystal growth solutions were made experimentally in the lab, that is, (1) $30\%$ polyacrylic acid solution containing 0.3 M sulfuric acid (ES 1), (2) $30\%$ polyacrylic acid solution containing 0.6M sulfuric acid (ES 2), (3) $30\%$ polyacrylic acid solution containing 0.3 M sulfuric acid and 0.6 M lithium sulfate(ES 3), and (4) $30\%$ polyacrlic acid solution containing 0.3 M sulfuric acid and $5\%$ phosphoric acid(ES4). The $37\%$ phosphoric acid solution used as a control. Bovine lower incisor tooth enamel was treated by the above solutions for 60 sec, washed out for 20 sec with slow water stream, and bonded lower anterior edgewise bracket with the light curing orthodontic composite resin adhesives. The teeth bonded brackets were stored in the distilled water at room temperature for 24 h, and followed to test the bracket shear bond strength. The acid etch technque showed 177.6 kg/$cm^2$ of mean shear bond strength which was the highest among the enamel treatment solutions. ES 1 shown 58.4 kg/$cm^2$ of mean shear bond strength and that of ES 4 showed 66.5 kg/$cm^2$. There was no significant difference between the two(p>0.05). ES2 showed 110.6kg/$cm^2$ of mean shear bond strength which was $62.3\%$ of that of acid etch technique. ES 3 showed 131.1 kg/$cm^2$ of mean shear bond strength which was the highest among experimental crystal growth solutions and which was $74\%$ of that of acid etch technique. The shear bond strengths of the crystal growth solutions were significantly lower that that of acid etch technique(p<0.05). The results sugest that although bracket shear bond strength of $30\%$ polyacrylic acid solution containing 0.3M sulfuric acid and 0.6 M lithium sulfate were showed the highest, it is low for the clinical application of this solution.

  • PDF

THE EFFECTS OF SURFACE TREATMENTS ON SHEAR BOND STRENGTHS OF LIGHT-CURED AND CHEMICALLY CURED GLASS IONOMER CEMENTS TO ENAMEL (법랑질의 표면처리가 광중합형 및 화학중합형 글래스아이오노머 시멘트의 전단결합강도에 미치는 영향)

  • Shin, Kang-Seob;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.25 no.2 s.49
    • /
    • pp.223-233
    • /
    • 1995
  • The purpose of this study was to evaluate the effects of surface conditioning with $10\%$ polyacrylic acid, etching with $38\%$ phosphoric acid, and polishing with a slurry of pumice on shear bond strengths of light-cured glass ionomer cement, chemically cured glass ionomer cement, and a composite resin to enamel, and to observe the failure patterns of bracket bondings. Shear bond strengths of glass ionomer cements were compared with that of a composite resin. Metal brackets were bonded on the extracted human bicuspids after enamel surface treatments, and samples were immersed in the $37^{\circ}C$ distilled water bath, and shear bond strengths of glass ionomer cements and a composite resin were measured on the Instron machine after 24hrs passed, and the deboned samples were measured in respect of adhesive remnant index. Scanning electron micrographs were taken of enamel surfaces after various treatments. The data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. 1. Shear bond strength of light-cured glass ionomer cement showed statistically higher than that of chemically cured glass ionomer cement. 2. Shear bond strengths of light-cured and chemically cured glass ionomer cements to enamel treated with $10\%$ polyacrylic acid and $38\%$ phosphoric acid showed statistically higher than those with a slurry of pumice. 3. According to scanning electron micrographs, enamel surface conditioned with $10\%$ polyacrylic acid is slightly etched and cleaned, that etched with $38\%$ phosphoric acid is severely etched, and that polished with a slurry of pumice is irregulary scretched and not completely cleaned. 4. After debonding, light-cured glass ionomer cement to enamel treated with $10\%$ polyacrylic acid showed less residual materials on the enamel solace than composite resin to enamel etched with $38\%$ phosphoric acid. 5. There was no significant difference in the shear bond strength of light-cured glass ionomer cement to enamel treated with $10\%$ polyacrylic acid and that of composite resin to enamel etched with $38\%$ Phosphoric acid.

  • PDF

Design Optimization of Bracket for Wear Sensor of Automobile Brake Pads Based on Dynamic Kriging Surrogate Model (자동차 브레이크 패드 마모량 측정센서 브라켓의 다이나믹크리깅 대리모델 기반 설계최적화)

  • Jun-Yeong Jeong;Jung Joo Yoo;Kyung Seok Byun;Hyunkyoo Cho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.95-101
    • /
    • 2024
  • This paper introduces an optimized design for a sensor bracket used to measure the wear amount of an automobile brake pad, based on a dynamic kriging surrogate model. During testing, the temperature of the brake pad can increase beyond 600℃, which often causes sensor malfunction. Therefore, it is essential to optimize the shape of the sensor bracket to minimize heat transfer. To reduce the computational cost of the optimization, the heat-transfer simulation is replaced by a dynamic kriging surrogate model. Dynamic kriging utilizes the best combination of correlation and basis functions and constructs an accurate surrogate model. Following optimization, the temperature of the sensor position decreases by 7.57%. The results from the surrogate model under optimum conditions are verified by a heat-transfer simulation, and the design optimization using a surrogate model is found to be effective.