• 제목/요약/키워드: 대체비료

검색결과 264건 처리시간 0.023초

간척지(干拓地)에서 수도(水稻) 및 기타작물(其他作物)의 내염성(耐鹽性)에 관(關)한 연구(硏究) -6. 염분간척지(鹽分干拓地)에서 수도(水稻)에 대한 N, P, K,의 증비효과에 관(關)하여 (Study on the Salt Tolerance of Rice and Other Crops in Reclaimed Soil Areas. -6. On the Effects of Increased N. P. K. Applications for Rice Plant in Reclaimed Salty Areas)

  • 임경빈
    • 한국토양비료학회지
    • /
    • 제3권1호
    • /
    • pp.35-41
    • /
    • 1970
  • 10a 당(當) N 10, 15, 20kg, 인산(燐酸) 8, 12, 16kg 및 가리(加里) 8, 12, 16kg의 각각(各各) 3수준(水準)의 조합(組合)인 삼요소증비(三要素增肥) 요인실험(要因實驗)을 농광(農光)을 공시(供試)하여 숙답구(熟畓區), 저(低) 및 고염분구(高鹽分區)(4월말(月末) 각염분농도(各鹽分濃度) 0.5%와 1%)에서 적기재배(適期栽培)로 실시(實施)하여 아래와 같은 결과(結果)를 얻었다. 1. 인산(燐酸)과 가리시비(加里施肥)를 10a 당(當) 8kg으로 고정(固定)하고 N시비(施肥)를 1.5배(倍)와 2배(倍)로 증가(增加)시켰을 때 숙답구(熟畓區)와 염분구(鹽分區)들에서는 다 같이 시비량(施肥量)에 비례(比例)하여 N 흡수(吸收)가 증가(增加)되었다. 그리고 이때의 N 흡수(吸收)는 대체(大體)로 염분구(鹽分區)에서 더 많았다. N 증비처리(增肥處理)를 하거나 삼요소(三要素) 증비처리(增肥處理)를 하면 염분구(鹽分區)에서는 Ca와 Si의 흡수조해(吸收阻害)가 보였다. 2. 숙답구(熟畓區)에서는 N, P, K의 증비(增肥)는 증수(增收)를 가져오지 못하였고 가리(加里) 2배비(倍肥)는 유의(有意)하게 감수(減收)를 가져왔다. 3. 저염분구(低鹽分區)에서 N 증비(增肥)는 고도(高度)의 유의차(有意差)로 증수(增收)에 효과가 있었으며 N 1.5 배비(倍肥)는 12%, N 2배비(倍肥)는 21% 증수(增收)되었다. 인산(燐酸)과 가리(加里)의 증비(增肥)로는 증수(增收)되지 않았다. 4. 고염분구(高鹽分區)에서도 N 증비(增肥)는 유의(有意)하게 증수효과가 있었으며 인산(燐酸)과 가리(加里)의 증비(增肥)로 증수(增收)되는 것 같으나 유의성(有意性)은 없었다. 5. N 증비(增肥)는 숙답구(熟畓區)에서 1.5배(倍)까지는 수수(穗數)가 증가(增加)되었으나 2배비(倍肥)에서는 더 증가(增加)를 보이지 않았으며 저(低) 및 고염분구(高鹽分區)에서는 시비량(施肥量)에 비례(比例)하여 늘었다. 인산증비(燐酸增肥)는 각(各) 실험구(實驗區)에서 수수증가(穗數增加)의 경향(傾向)이 보였으나 가리증비(加里增肥)는 증가(增加)에 효과가 없었다. 6. 수중(穗重)에 대(對)한 N 증비(增肥)의 효과는 숙답구(熟畓區)에서는 감소(減少)로 나타났으며 양염분구(兩鹽分區)에서는 1.5배비(倍肥)까지는 증가(增加)되나 2배비(倍肥)는 1.5배비(倍肥)와 거의 같았다. 인산(燐酸), 가리(加里)의 증비(增肥)는 어느 실험구(實驗區)에서도 수중(穗重)에 영향(影響)을 미치지 못하였다. 천립중(千粒重)에 대(對)한 N, P, K의 증비효과는 숙답구(熟畓區)와 염분구(鹽分區)에서 모두 뚜렷하지 않았다. 수당립수(穗當粒數)에 대(對)한 N 증비효과는 숙답구(熟畓區)에서 감소(減少)의 경향(傾向)이었으나 양염분구(兩鹽分區)에 있어서는 증가(增加)되었다. 수당립수(穗當粒數)에 대(對)한 인산(燐酸), 가리(加里)의 증비효과는 없는것 같았다. 7. 임실율(稔實率)에 대(對)한 N 증비(增肥)의 효과는 숙답구(熟畓區)에서 감소(減少)되었으며 저(低) 및 고염분구(高鹽分區)에서는 N 증비효과가 없었고 인산(燐酸) 및 가리(加里)의 증비(增肥)는 어느 실험구(實驗區)에서도 효과가 없었다. 8. 정현비율(精玄比率)에 대(對)한 N, P, K의 증시효과는 각각(各各) 어느 실험구(實驗區)에서도 없었으나 설미(屑米)는 N 증비(增肥)에 의하여 숙답구(熟畓區) 및 염분구(鹽分區)들에서 다 같이 증가(增加)되었으며 숙답구(熟畓區)에서는 더 현저(顯著)하였다. 9. 고중(藁重)에 대한 N 증비(增肥)의 효과는 숙답구(熟畓區)와 고(高) 및 저염분구(低鹽分區)에서 다같이 증가(增加)되었으며 인산(燐酸), 가리(加里)의 증비(增肥)는 효과가 없었다. 정조중(精租重)/고중(藁重)에 대(對)한 N 증비(增肥)의 효과는 숙답구(熟畓區)에서는 감소(減少)되었으나 저(低) 및 고염분구(高鹽分區)에서는 증가(增加)되었고 인산(燐酸) 및 가리(加里)의 증비효과는 없었다.

  • PDF

김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究) (Characteristics and classification of paddy soils on the Gimje-Mangyeong plains)

  • 신용화
    • 한국토양비료학회지
    • /
    • 제5권2호
    • /
    • pp.1-38
    • /
    • 1972
  • 우리나라 답토양(畓土壤)에 대(對)한 토지(土地)의 합리적(合理的) 이용(利用), 토지기반조성(土地基盤造成) 및 생산성 향상(向上) 그리고 토양(土壤)에 관(關)한 조사연구(調査硏究)의 방향(方向)을 뒷받침하기 위(爲)하여 김제만경평야(金堤萬頃平野)에 분포(分布)하고 있는 답토양(畓土壤)에 대(對)한 형태(形態) 및 이화학적(理化學的) 특성(特性) 그리고 그와 수도수량(水稻收量)과의 관계(關係)를 구명(究明)하고 이를 기초(基礎)로 하여 답토양(沓土壤)의 분류법(分類法)과 적성등급구분(適性等級區分)을 시안(試案)하였는 바 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. 답토양(畓土壤)의 형태(形態), 이화학적(理化學的) 특성(特性) 및 그와 수도수량(水稻收量)과의 관계(關係) 김제(金堤) 만경평야(萬頃平野)에 분포(分布)하고 있는 15개(個) 답토양통(畓土壤統)에 대(對)하여 이들 토양(土壤)의 형태(形態), 이화학적(理化學的) 특성(特性)을 보면 다음과 같다. 토양단면(土壤斷面)의 발달정도(發達程度)를 보면 공덕(孔德), 김제(金堤), 만경(萬頃), 백구(白鷗), 봉남(鳳南), 부용(芙蓉), 수암(水岩), 전북(全北), 지산(芝山) 및 호남통(湖南統)는 B(Cambic B)층(層)이 있고 극락(極樂)과 화동통(華東統)은 Bt(Argillic B)층(層)이 있으나 광활(廣活), 신답(新踏) 및 화계통(華溪統)에는 B층(層) 혹(或)은 Bt층(層)이 없다. 특(特)히 공덕(孔德) 및 봉남통(鳳南統)은 흑니층(黑尼層)이 심토(心土) 하부(下部)에 개재(介在)되여 있다. 토양단면(土壤斷面)의 토색(土色)을 보면 공덕(孔德), 광활(廣活), 백구(白鷗) 및 신답통(新踏統)은 대체(大體)로 청회색(靑灰色), 암회색(暗灰色)을 띄우고 김제(金堤), 만경(萬頃), 봉남(鳳南), 부용(芙蓉), 수암(水岩), 전북(全北), 지산(芝山) 및 호남통(湖南統)은 회색(灰色), 회갈색(灰褐色)을 띠우며 극락(極樂), 화계(華溪) 및 화동통(華東統)은 표토(表土) 및 표토하부(表土下部)의 회색(灰色)을 제외(除外)하고 황갈색(黃褐色), 갈색(褐色)을 띠운다. 토양단면(土壤斷面)의 토성(土性)을 보면 공덕(孔德), 극락(極樂), 김제(金堤), 봉남부용(鳳南芙蓉), 호남(湖南) 및 화동통(華東統)은 식질(埴質)이고 백구(白鷗), 전북(全北) 및 지산통(芝山統)은 식양질(埴壤質) 혹은 미사식양질(微砂埴壤質)이며 광활(廣活), 만경(萬頃) 및 수암통(水岩統)은 미사사양질(微砂砂壤質) 그리고 신답(新踏) 및 화계통(華溪統)은 사질(砂質) 혹은 석력사질(石礫砂質)이다. 표토(表土)의 탄소함량(炭素含量)은 0.29%~2.18% 범위(範圍)에 있으나 1.0~2.0%인 것이 많으며 표토(表土)의 전질소함량(全窒素含量)은 0.03%~0.24% 범위(範圍)에 있다. 이들은 심토(心土) 혹은 기층(基層)으로 갈수록 감소(減少)되는 경향(傾向)이나 불규칙적(不規則的)이다. 표토(表土)의 탄질비(炭窒比)는 4.6~15.5 범위(範圍)인데 8~10인 것이 많으며 심토(心土) 및 기층(基層)에서는 표토(表土)에 비(比)하여 그 범위(範圍)가 커서 3.0~20.25이다. 토양반응(土壤反應)은 pH4.5~8.0 범위(範圍)에 있으나 광활(廣活) 및 만경통(萬頃統)을 제외(除外)하고는 모두 산성(酸性)이다. 염기치환용량(鹽基置換容量)은 표토(表土)에서는 5~13 me/100g 범위(範圍)이며 심토(心土) 및 기층(基層)에서는 사질토양(砂質土壤)을 제외(除外)하고 모두 10~20 me/100g 범위(範圍)에 있다. 염기포화도(鹽基飽和度)는 공덕(孔德) 및 백구통(白鷗統)을 제외(除外)하고는 모두 60% 이상(以上)이다. 표토(表土)의 활성철함량(活性鐵含量)은 0.45~1.81% 범위(範圍)이고 역환원성(易還元性)망간은 15~148ppm 범위(範圍)이며 유효규산은 36~366ppm 범위(範圍)에 있다. 이들 3성분(成分)의 용탈(溶脫) 및 집적(集積)은 토양배수(土壤排水), 토성조건(土性條件)에 따라 다르지만 대체(大體)로 10~70cm 범위(範圍)에 집적(集積)하고 있으나 규산(珪酸)은 경우(境遇)에 따라 철(鐵), 망간 보다 깊은 층위(層位)에 집적(集積)되여 있다. 각(各) 토양통(土壤統)의 주요특성(主要特性)은 해안(海岸)에서 부터 거리에 따라 점변(漸變)하고 있으며 점토(粘土), 유기탄소(有機炭素) 및 pH는 해안(海岸)으로 부터 내륙(內陸)으로 옮겨가는 거리와 다음과 같은 상관(相關)이 있다. y(표상(表上)의 점토함량(粘土含量)) = $$-0.2491x^2+6.0388x-1.1251$$ y (심토(心土) 및 표토하부(表土下部)의 점토함량(粘土含量)) = $$-0.31646x^+7.84818x-2.50008$$ y(표토(表土)의 유기탄소함량(有機炭素含量)) = $$-0.0089x^2+0.2192x+0.1366$$ 로서 내륙(內陸)으로 갈수록 높아지는 경향(傾向)이며 y(심토(心土) 및 표토하부(表土下部)의 pH) = $$0.0178x^2-0.4534x-8.353$$ 로서 내륙(內陸)으로 갈수록 낮다. 토양(土壤)의 형태(形態) 및 이화학적(理化學的) 특성(特性)에 있어 특기(特記)되는 것은 토양(土壤)의 발달도(發達度), 토색(土色), 모재(母材)의 다원적(多元的) 퇴적(堆積), 유기물층(有機物層)의 개입(介入), 토성(土性) 및 토양반응(土壤反應) 등(等)이였으며 이들은 답토양(畓土壤)의 분류(分類)에서 고려(考濾)되여야 할 사항(事項)이였다. 토양(土壤)의 몇가지 특성(特性)과 수도수량(水稻收量)과의 관계(關係)에서 토양배수(土壤排水)가 약간양호(若干良好) 내지(乃至) 불량(不良)한 식질토(埴質土), 양질토(壤質土) 그리고 유효심도가 낮은(50cm) 식질토(埴質土)들은 수량(收量)이 대부분(大部分) 10a당(當) 375kg 이상(以上)이며 사질토(砂質土), 배수(排水)가 양호(良好)한 식질토(埴質土), 유효심도가 낮은 양질토(壤質土) 및 함염토(含鹽土)들은 수량(收量)이 대부분(大部分) 10a당(當) 375kg미만(未滿)이다. 수도수량(水稻收量)에 영향(影響)을 미치는 토양(土壤)의 형태적(形態的) 특성(特性)은 토양배수(土壤排水), 토성(土性), 유효심도, 표토(表土) 및 표토하부(表土下部)의 회색화(灰色化) 그리고 염농도(鹽濃度) 등(等)이며 이들은 답토양(畓土壤)의 적성등급구분(適性等級區分)에서 고려(考慮)되여야 할 사항(事項)이였다. 2. 답토양(畓土壤)의 분류(分類) 및 적성등급구분(適性等級區分) 답토양(畓土壤)의 분류기준(分類基準)은 토양(土壤) 자체(自體)가 가지고 있는 성질(性質)에 근거(根據)를 두었다. 토양분류단위(土壤分類單位)는 토양대군(土壤大群), 토양군(土壤群), 토양아군(土壤亞群), 토양계(土壤系) 그리고 토양통(土壤統)의 5단계(段階)를 두고 분류(分類)의 기본(基本) 단위(單位)는 토양통(土壤統)으로 하였다. 토양분류(土壤分類)에 있어 형태적(形態的) 특성(特性)의 차이(差異)를 결정(決定)하기 위(爲)하여 2종류(種類)의 특징토층(特徵土層) 즉(卽) 숙성토층(熟成土層) 및 반숙토층(半熟土層)을 설정(設定)하여 이들의 유무(有無) 및 종류(種類)를 토양대군(土壤大群)의 분류기준(分類基準)으로 하였다. 토양군(土壤群) 및 토양아군(土壤亞群)의 분류(分類)에 있어 고려(考慮)되여야 할 특징적(特徵的) 토양특성(土壤特性)은 우선(于先), 토색(土色), 염농도(鹽濃度), 표토(表土) 및 표토(表土) 하부(下部)의 회색화(灰色化), 토사(土砂)의 다원적(多元的) 퇴적(堆積) 그리고 유기물층(有機物層)의 개입(介入)으로 하였으며 토양계(土壤系)의 분류(分類)에서 고려(考慮)한 토양특성(土壤特性)은 토양반응(土壤反應), 토성(土性) 및 석력함량(石礫含量)에 근거(根據)를 두어 분류(分類)하는 한편 이들에 대(對)한 정의(定義)를 내렸다. 그리고 필자(筆者)의 시안(試案)과 기존(旣存)의 분류안(分類案)을 상호비교(相互比較)하여 검토(檢討)하였다. 답토양(畓土壤)의 적성등급구분(適性等級區分)은 인위적(人爲的) 작용(作用)에 의(依)한 가변성(可變性)이 적은 토양특성(土壤特性)을 토대(土臺)로 하였으며 등급구분단위(等級區分單位)는 등급(等級) 및 아급(亞級)의 2단계(段階)를 두었다. 등급(等級)은 토양(土壤)의 잠재생산력(潛在生産力)이 어느 주어진 단위(範圍)에서 같고 토지이용(土地利用) 및 관리(管理)의 난이(難易)를 고려(考慮)한 토양조건(土壤條件)에 따라 1급(級)에서 4 급지(級地)까지의 4 등급(等級)으로 구분(區分)하였고 아급(亞級)은 동일등급내(同一等級內)에서 중요(重要)한 제한인자(制限因子)로 하였으며 그 인자(因子)는 경사(傾斜), 저염(低濕), 사질(砂質) 석력(石礫), 염해(鹽害), 미력(美熟)이다. 이들 등급(等級) 및 아급(亞級)을 각각(各各) 정의(定義)를 하였으며 아울러 분류시안(分類試案)과의 연관성(連關性)을 검토(檢討)하였다. 김제(金堤) 만경평야(萬頃平野)의 15개(個) 답토양통(畓土壤統)의 분류(分類) 및 적성등급(適性等級) 구분시안(區分試案)을 종합(綜合)하여 보면 다음과 같다.

  • PDF

인공광 식물공장에서 수경배양액 및 광질 조절이 상추 실생묘 생장에 미치는 영향 (Hydroponic Nutrient Solution and Light Quality Influence on Lettuce (Lactuca sativa L.) Growth from the Artificial Light Type of Plant Factory System)

  • 허정욱;박경훈;홍승길;이재수;백정현
    • 한국환경농학회지
    • /
    • 제38권4호
    • /
    • pp.225-236
    • /
    • 2019
  • 인공광 식물공장에서는 작물을 생산하기 위하여 일반적으로 화학비료 유래 무기성분을 포함하는 배양액을 시용하여 수경재배한다. 본 연구에서는 광질이 상이한 식물공장에서 관행의 무기배양액 일부 또는 전량을 유기배양액으로 대체할 수 있는 폐기 농업부산물 유래 유기배양액을 시용하여 수경재배하고 작물의 생장에 미치는 영향을 검토하였다. 청색, 적색 및 백색 LED를 1:2:1의 비율로 혼합한 혼합LED 및 관행의 형광등 조사 조건에서 적치마와 청치마 상추 실생묘를 35일간 수경재배한 결과, 적치마와 청치마 상추의 생체중 및 전개엽수 증가는 형광등을 조사한 Y구에서 통계적으로 유의하게 증가하였다. 그러나 유·무기 혼합배양액 처리구인 YK 및 YTJ에서는 오히려 혼합LED 조사구에서 증가하였다. 유기배양액 단용 또는 유·무기 혼합배양액 처리시 엽내 SPAD치는 두 실생묘 모두 Y구와 유사하거나 증가하는 경향을 나타내었다. 관행의 무기배양액인 Y구에서 배양액내 구성성분 중 가장 많은 양을 차지하고 있는 무기성분인 NO3-N은 재배 개시일에 약 97 mg/L으로, 적치마와 청치마 상추 실생묘에서 모두 재배기간이 경과함에 따라 감소하는 경향을 보였다. 적치마의 경우 재배종료시 각 처리구별 NO3-N 농도는 형광등 조사시 약 29 mg/L, 혼합LED 조사시 24 mg/L였으며, 청치마의 경우 형광등 조사시 약 26 mg/L, 혼합LED 조사시 47 mg/L로, 초기 투입량 대비 25~48% 정도의 양이 재배종료시까지 흡수되지 않고 남아 있었다. 재배개시일 NH3-N 농도는 Y구3-N 잔여량은 약 13%로 최대값을 나타내었다. 관행의 무기배양액내 질산태질소는 작물체에 흡수되어 생체중, 엽수 증가와 같은 지상부 생장을 좌우하는 주요 성분이지만 재배종료시까지 전량이 흡수되지 않고 남아 있는 것으로 보아 상추 수경재배시 배양액내 질산태질소의 초기 투입량을 조절할 필요성이 대두되었다. 연구결과 농업부산물 유래 유기배양액을 활용하여 적치마와 청치마 상추를 수경재배할 경우 유기배양액 단용보다 유·무기 혼합배양액 시용으로 유기배양액내 부족한 질소 성분을 무기질소로 보충할 수 있어 무기성분 사용량 저감이 기대된다. 또한 상추 실생묘의 양적생장 추이와 달리 엽내 색소합성이 관행 무기배양액보다 특정 유기배양액 단용 또는 혼용에 의해 유의하게 증가하는 것으로 보아 작물체내 물질합성량, 유기배양액 사용기간 및 재이용 등 유기배양액의 화학적 특성 변화에 대한 연구가 필요할 것으로 판단된다.

환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구 (Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions)

  • 함영수
    • 한국작물학회지
    • /
    • 제17권
    • /
    • pp.1-44
    • /
    • 1974
  • 본연구는 1972년에 수원에서 그리고 1973년에는 다시 수원, 매리 및 이리 광주의 3개 지역에서 경질 소맥인 NB 68513, Caprock와 중간질 소맥인 영광, 연질 소맥인 수계 169호를 공시하여 시비량 및 재배시기를 각각 3수준의 처리를 두어 등숙 및 품질의 변화에 관한 실험을 수행하였다. 한편 1973년 및 1974년에는 수원에서 중간질 소맥인 영광과 경질 소맥인 NB 68513을 공시하고 온실에서 온도, 습도 및 일사량을 달리하여 이들이 소맥의 등숙과 품질에 미치는 영향을 추구하였으며, 얻어진 결과는 다음과 같다. 1. 소맥립의 등숙: 1) 1립중의 변이폭은 대립종이 소립종에 비하여 크고, 립중별 소맥립의 분포는 대립종이 평균치에 가까이 분포된 율이 높았고, 소립종은 넓은 분산을 보였다. 2) 립중의 증가에 미치는 립장, 립후 및 립폭의 영향의 정도는 립장보다 립후와 립폭이 컸다. 3) 등숙 시기별 립중의 변화에 있어서 영광은 개화후 14일부터 35일까지, NB 68513은 14일부터 28일까지에 급증하였고, 대립종인 영광은 소립종인 NB68513에 비하여 등숙기간이 길었으며 배란비율도 완만한 증가를 보였다. 4) 1000립중은 대체로 저온에서보다 고온에서, 다습보다 건조한 공중습도 조건에서 가벼웠고, 저온이나 고온에서라도 다습 조건하에서는 무거운 경향을 보였다. 또한 서광의 영향은 저온에서보다 고온에서 컸으며, 다습한 경우에는 일정한 경향이 없었다. 5) 등숙기간중 온도, 습도 및 서광의 영향은 소립종인 NB 68513보다 대립종인 영광에서 컸으며, 1000립중의 증감과 등숙일수 간에는 높은 정의 상관이 있었다. 6) 1000립중과 1$\ell$중은 시비량의 증가에 따라 무거워졌으나, 보비와 다비구간에는 그 증가율이 비교적 낮았고, 조숙재배는 만파재배보다 무거웠으며, 이와 같은 경향은 수원에서 현저하였고 광주 및 이리에서는 미미하였다. 2. 제분성: 7) 동일 품종에서 1000립중이 무겁게 나타난 저온다습 조건 및 조숙재배가 고온, 건조, 조건 및 만파재배에 비하여 제분율이 높았고, 지역간 차이는 일정한 경향이 없었다. 8) 제분율은 영광이 가장 높고 수계 169호가 가장 낮았으며, 경질 소립종인 Caprock, NB 68513은 연질 소립종인 수계 169호보다 높았다. 9) 회분 함량은 지역, 시비량 및 재배시기에 따른 차이는 작았고, 품종간 차이는 컸으며, NB 68513 및 Caprock는 영광 및 수계 169호보다 현저히 높았다. 3. 단백질 함량: 10) 단백질 함량은 1000립중이 가벼웠든 고온, 건조 및 서광 조건에서 저온, 다습 조건에서보다 높았으며, 이러한 경향은 영광에서 현저하고 NB 68513에서 적었다. 11) 종질의 단백질 함량은 개화후 1~2주일 사이에 높았는데, 이는 배란에 대한 배와 종피의 비율이 크기 때문이었고, 등숙이 진전됨에 따라 배, 종피의 영향은 감소되며, 달서 단백질 함량도 감소되었으나 개화후 3~4주부터는 다시 단백질함량이 증가되어 개화후 7주에 최대에 달하였다. 등숙 중기(개화후 3~4주) 이후의 단백질함량 증가는 대체로 1000립중의 증가와 비슷하였으나, 성숙된 종실의 단백질 함량의 증감은 등숙기간의 장단의 영향보다는 역일상에 따른 기상적 환경, 특히 기온에 의한 영향을 많이 받은 것으로 보였다. 12) 소맥분의 단백질 함량은 종실의 단백질 함량의 변화와 같아서 이 양자간에는 높은 정의 상관이 있었다. 13) 단백질 함량은 각 품종 모두 시비량이 증가할수록, 또 재배시기가 늦어질수록 증가하는 경향이었고, 수원에서는 광주, 이리에서보다 그 경향이 현저하였다. 14) 품종별로 존 단백질 함량은 영광, NB 68513 및 Caprock은 비슷하였으며 비교적 높았고, 수계 169호는 낮았는데 이 품종은 재배법에 따른 단백질 함량의 변이도 적었다. 15) 단위 면적당 단백질 수량은 시비량이 많을수록, 재배시기가 빠를수록 높은 경향이었고, 조숙재배에서는 질소질 비료의 이용율이 높았으며, 영광은 시비량 증가에 따른 단백질 수량 증가가 비교적 컸다. 4. 분의 물리화학적 특성: 16) Sedimentation value는 저온, 다습, 소비 조건에서보다 고온, 건조, 다비 조건에서 컸고, NB 68513 및 Caprock는 그 경향이 현저하였는데 영광 및 수계 169호는 뚜렷하지 않았었고, 광주, 이리보다는 수원에서 Sedimentation value의 변이가 컸다. Sedimentation value의 증감은 단백질 함량의 증감과 관계가 깊으나, 다습조건에서는 Sedimentation value가 감소되었다. 한편 Sedimentation value는 단백질 함량의 증가에 따라 증가되었으며, 성숙기에 최대에 달하였다. 17) Pelshenke value는 재배방법 및 지역 간의 차이가 Sedimentation value의 경우와 대체로 같은 경향을 보였다. 18) Mixing time은 NB 68513이 4~6분, Caprock가 5~7분 소요되었으며, 영광 및 수계 169호는 NB 68513 및 Caprock보다 지역 및 재배법에 따른 변이가 컸다. Mixing height와 Mixing area는 NB 68513 및 Caprock에서 컸고 영광 및 수계 169호에서는 작았으며, 재배방법에 따른 변이는 일정한 경향이 없었고, 지역에 따른 차이는 이리, 광주에서 낮고 수원에서 높았다. 19) NB 68513 및 Caprock의 품질에 있어서 제분성은 고온, 건조 조건, 또는 다비, 만파재배에서 떨어졌으나 분의 물리화학적 특성은 양호하여 제빵 적성이 좋고, 조숙재배는 물리화학적 특성이 다소 불량하였으나 제분성이 높고 단위 면적당 단백질 수량인 높은 경향이었다. 지역간에서 보면 이리, 광주보다는 수원이 NB 68513 및 Caprock의 재배에 적합한 것으로 판단되었다. 5. 분의 물리화학적 특성의 상호관계: 20) 제분율 및 회분함량과 분의 물리화학적 특성과는 직접적인 상관이 없었으며, 1000립중이 가벼운 것이 단백질 함량이 높았고 분의 물리화학적 특성도 양호하였다. 21) NB 68513 및 Caprock에 있어서 단백질 함량과 Sedimentation value, Pelshenke value 및 mixing height와는 정의 상관이 있었으며, 단백질 함량이 높으면 분의 Gluten strength도 강하고 따라서 제빵 적성도 양호하였다. 영광 및 수계 169호에 있어서는 단백질 함량과 Sedimentation value와는 정의 상관이 있으나 Pelshenke value와 Mixing height와는 상관이 없었다. 따라서 단백질 함량 증가에 따라 Gluten strength 양자와 연결됨이 크고, Pelshenke value와 Mixogram은 Gluten strength와 연관됨으로 경질과 연질의 품종 구분에는 Mixogram, Pelshenke value의 검정이 유리하고, Sedimentation valuer검정은 같은 품종내에서 재배법 차이에 따른 품질 평가에 알맞은 것으로 보았다.

  • PDF