• Title/Summary/Keyword: 대조차 해빈

Search Result 74, Processing Time 0.021 seconds

Seasonal Variation of Surface Sediments in the Dongho Beach, Gochang-gun, Korea (고창군 동호 해빈 표층 퇴적물의 계절 변화)

  • So, Kwang-Suk;Ryang, Woo-Hun;Kang, Sol-Ip;Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.708-719
    • /
    • 2010
  • The Gochang-gun Dongho macro-tide pocket-type beach, located on the southwestern coast of Korea, is investigated in terms of the seasonal variations of surface sediment and sedimentary environment. Surface sediments of 45 sites in four seasons (May 2006-February 2007) are sampled across three survey lines (15 sites in each survey line). The surface sediments of the Dongho Beach are mainly composed of fine to coarse sands, and the ratio of fine sand is the largest. The average of grain size is the coarsest in the summer. The spatial distribution of surface sediments shows a coast-parallel band of fine and medium sands during three seasons of spring, fall, and winter, whereas medium sands dominated in the northern part of the study area during the summer. These results suggest that a tide is more effective than a wave in the surface sediments of the Dongho Beach during the summer.

Seasonal Variation of Surface Sediments in the Kwangseungri Beach, Gochanggun, Korea (고창군 광승리 해빈 표층 퇴적물의 계절 변화)

  • So, Kwang-Suk;Ryang, Woo-Hun;Choi, Sin-Lee;Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.497-509
    • /
    • 2012
  • The Gochanggun Kwangseungri macro-tide open-coast beach, located in the southwestern coast of Korea, was investigated in terms of the seasonal variations of surface sediment facies and sedimentary environment. Surface sediments of 45 sites in four seasons (May 2006 - February 2007) were sampled along three survey lines (15 sites in each survey line). The surface sediments of the Kwangseungri Beach are mainly composed of fine-grained sands, and its mean grain size is the coarsest in winter. Mud facies partly exists in summer, whereas it is nearly absent in winter. The spatial distribution of surface sediments shows a coast-parallel band of fine and medium sands during spring, fall, and winter. In the northern part, the study area is dominated by fine sands during summer, whereas by coarse sands during winter. These results can be interpreted that tide is more effective than wave on the surface sediment distribution of the Kwangseungri Beach during the summer season.

Characteristics of Erosion Variation at Haeundae Beach due to Multiple Typhoons (복수의 태풍내습에 의한 해운대 해수욕장 침식변화특성)

  • Kang, Tae-Soon;Lee, Jong-Sup;Kim, Jong-Beom;Kim, Jong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.920-926
    • /
    • 2019
  • In this study, we analyzed the erosion variation of beach area at Haeundae Beach after coastal improvement project using video monitoring system operated by the Coastal Erosion Monitoring (Ministry of Oceans and Fisheries). Haeundae Beach was well maintained and stabilized following large scale nourishment through coastal improvement project despite of seasonal fluctuations. However, multiple typhoons over the last two years caused beach stabilization patterns and seasonal fluctuations to lost equilibrium, resulting in rapid erosion. In particular, the sandy beach was eroded by typhoon Solic and Kongray in 2018 and failed to recover beach area in winter by seasonal fluctuations. And due to multiple typhoons in 2019, the beach area was reduced 9.5 % (12,607 ㎡) year-on-year. According to analyze the observed wave and beach area data in Haeundae, the tendency of erosion and sedimentation was influenced by seasonal incident wave direction for each section(west, center and east part). Therefore, to identify the causes of decreasing seasonal fluctuation characteristics and continuous erosion, hereafter, more precise monitoring of different factors are needed, such as the crest heights of submerged breakwater and its loss of function, and sand leakage to the outside around submerged breakwater.

Sediments Distribution and Micro-topographical Landscape Changes of a Composite Mixed Beach - Padori Beach in Taean National Park - (혼합해빈의 퇴적물 분포 특성과 미지형 경관변화 - 태안해안국립공원 파도리 해빈을 중심으로 -)

  • LEE, Won Young;SUNG, Hyo Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.1-13
    • /
    • 2013
  • Padori beach is one of the representative composite mixed beach in Korea and shows divert geomorphic landscape change. It belongs to the Taean National Park. The purpose of this study is to clarify movement mechanism of sediments from sediment distribution of Padori beach associated with morphology. In addition, it is to explain morphological landscape change under different wave and tide condition in the composite mixed beach consisting of a dissipative low tide terrace and a reflective beach face with a high tide range of 5 to 7m. The results of this study are: First, the mean grain size of sediments becomes smaller from the south of the beach, where there is a wide wave-cut platform, to the north because gravels are supplied from the wave-cut platform as well as sea-cliff in the south of the beach. A sedimentation pattern of the sandy gravel on the beach face and gravel on the berm, and gradation phenomena of grain size on cross-shore and alongshore direction in the beach can be explained with a pattern of sediment movement, overpassing, in the composite mixed beach. Second, micro-topography on beach face and berm were changed depending on effects of wave height and tide. As a result, in low-wave energy environments, a berm is developed in large size, and beach cusps are formed on the upper beach face, while in high-wave energy environments, a berm is built up in relatively small size, and mixture of sediments occur on the upper beach face.

Study of the Cheonripo Intertidal Beach Sands and Coastal Dune Sands, Cheonripo, the West Coast of Korea (한국 서해 천리포 사질 조간대 해빈층과 해안 사구층의 연구)

  • 박용안;최경식
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1993
  • A sedimentation study of the Cheonripo intertidal beach sands and its related coastal dune sands, Cheonripo, Seosan Gun, Choongcheong Namdo, Korea has been carried out based on a series of several summer time field surveys. Each subenvironment in the Cheonripo coastal zone, that is, intertidal sand beach and coastal sand dune, could be differenciated in terms of textural parameters. The coastal dune sands are finer than the intertidal beach sands in mean grain size, and the sorting of dune sands is relatively poorer than that of intertidal beach sands. However, the skewness of intertidal beach and dune sands is commonly positive. Such textural parameters are characteristically differentiated on scatter diagrams. A series of megaripple bedform observations for 6 tidal cycle periods(August 13, 14 and 15, 1990) are interpreted to find out migration pattern of bedforms and its related sand migration. Such migration natures are shown on the tables and figures.

  • PDF

Morphologic Response of Gravel Beach to Typhoon Invasion - A Case Study of Gamji Beach Taejongdae in Busan (태풍 내습 시 자갈 해빈의 지형반응 - 부산 태종대 감지 해빈의 사례)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • To understand the impact of typhoons on Gamji gravel beach Taejongdae in Busan, we carried out beach profiling using a VRS-GPS system and a Drone photogrammetry for the typhoons 'Kong-rey' invaded in October 2018 and 'Danas' in July 2019. In addition, grain sizes are analyzed to investigate the overall distribution pattern of gravels on the beach, and the beach topography is surveyed periodically to confirm the recovery rate of the beach. Grain-size analysis reveals that mean gravel sizes, in general, become finer from -6.2Φ to -5.4Φ towards the east in the seashore line direction. Variation in mean sizes is obviously observed in the cross-shore direction. Gravels in the swash zone are relatively fine about -4.5Φ in size and equant in shape, whereas the coarse and oblate gravels ranged from -5Φ to -6Φ are found in the berm. Gamji gravel beach particularly has two lines of berms: a lower berm situated facing beach and an upper berm about 10 m landward. After the typhoon Kong-rey passed by, about 1.4 m of severe erosion in upper berm occurred, and the berm eventually disappeared. On the backshore of the upper berm about 50 cm of erosion took place so that the elevation became lower. However, tangible erosion was not observed in the lower berm. When typhoon Danas hit, rated as mild storm, both upper and lower berm were eroded out. However, about 50 cm of deposition occurred only in the backshore. Only three days later, the new lower berm was formed, meaning that sedimentation rate must be high. This result indicates that Gamji gravel beach is recovered very fast from erosion caused by the typhoons when it is under the fair-weather condition even though beach morphology changes dramatically in a short period of time. Gravel beach is estimated to be or evaluated very resilient to typhoon erosion.

Seasonal Morphodynamic Changes of Multiple Sand Bars in Sinduri Macrotidal Beach, Taean, Chungnam (충남 태안군 신두리 대조차 해빈에 나타나는 다중사주의 계절별 지형변화 특성)

  • Tae Soo Chang;Young Yun Lee;Hyun Ho Yoon;Kideok Do
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.203-213
    • /
    • 2024
  • This study aimed to investigate the seasonal patterns of multiple bar formation in summer and flattening in winter on the macrotidal Sinduri beach in Taean, and to understand the processes their formation and subsequent flattening. Beach profiling has been conducted regularly over the last four years using a VRS-GPS system. Surface sediment samples were collected seasonally along the transectline, and grain size analyses were performed. Tidal current data were acquired using a TIDOS current observation system during both winter and summer. The Sinduri macrotidal beach consists of two geomorphic units: an upper high-gradient beach face and a lower gentler sloped intertidal zone. High berms and beach cusps did not develop on this beach face. The approximately 400-m-wide intertidal zone comprises distinct 2-5 lines of multiple bars. Mean grain sizes of sand bars range from 2.0 to 2.75 phi, corresponding to fine sands. Mean sizes show shoreward coarsening trend. Regular beach-profiling survey revealed that the summer profile has a multi-barred morphology with a maximum of five bar lines, whereas, the winter profile has a non-barred, flat morphology. The non-barred winter profiles likely result from flattening by scour-and-fill processes during winter. The growth of multiple bars in summer is interpreted to be formed by a break-point mechanism associated with moderate waves and the translation of tide levels, rather than the standing wave hypothesis, which is stationary at high tide. The break-point hypothesis for multi-bars is supported by the presence of the largest bar at mean sea-level, shorter bar spacing toward the shore, irregular bar spacing, strong asymmetry of bars, and the 10-30 m shoreward migration of multi-bars.

Beach Deformation Mechanisms in Haeundae Beach (해운대(海雲臺) 해수욕장(海水浴場)의 해빈변형기구(海濱變形機構))

  • Lee, Jong Sup;Park, II Heum;Kim, Cha Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.595-605
    • /
    • 1994
  • The field observations. data analyses and numerical experiments are performed to investigate the short and long term beach deformation mechanisms in Haeundae beach. The schematic diagrams of deposition and erosion mechanism due to the attack of typhoons are described from the analysis on the beach widths and profiles. The short term beach deformation depends strongly on the characteristics of incident waves and wave-induced currents. The main incident wave and the calibration parameters of the shoreline change model are determined using the beach width data. Beacause the main incident wave approaches obliquly from the SE direction, the net westward longshore sediment transport occurs. Therefore the unbalance of longshore sediment budget in the east of the beach where the sediment source dose not exist causes a beach erosion. On the other hand, the deposited sand in the west is lost offshore by the storm wave action.

  • PDF

An analysis of Haeundae Beach Coastal Topography change and Sea Level Rise (해수면 상승과 해운대 해수욕장해안지형 변화분석)

  • Kim, Ji-Yong;Choe, Cheol-Ung;Kim, Yeong-Seop
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.173-174
    • /
    • 2008
  • 해안 침식이 진행되고 있는 부산 해운대 해수욕장을 중심으로 해수면 상승에 따른 해안선 변화에 대한 분석을 실시하였다. 1947년부터 2008년까지 항공사진을 활용하여 해안선을 추출하였는데 사진촬영시간에 따라 해안선의 위치가 현저히 변화하기 때문에 위치만으로는 비교할 수 없고, 평균적인 해안선 부근의 경사와 촬영시의 조수상태를 고려한 수심별 해빈 면적 산정 공식을 활용하여 해안선 면적을 구하였다. 또한 조위자료를 통하여 40년 동안의 해수면 상승량을 산출하고, 이를 바탕으로 미래의 해안선 후퇴거리를 계산해 보았다. 그 결과 3008년도 해빈 면적은 1947년도와 비교하면 약 29% 면적이 감소하였고, 1992년도에는 일시적으로 해빈 면적이 상승하는데 이는 양빈 사업으로 인한 것으로 이후 다시 감소현상을 보인다. 그리고 조위자료 분석 결과 해수면은 연평균 2.462mm/year의 속도로 상승하였다.

  • PDF

Interaction between Coastal Debris and Vegetation Zone Line at a Natural Beach (자연 해안표착물과 배후 식생대 전선의 상호 작용에 관한 연구)

  • Yoon, Han Sam;Yoo, Chang Ill
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2014
  • Changes in the interactions among incident ocean water waves, coastal debris (marine debris), and the back vegetation zone line on a natural sandy beach on the island of Jinu-do in the Nakdong river estuary were investigated. The study involved a cross-sectional field survey of the beach, numerical modeling of incident ocean water waves, field observations of the distribution of coastal debris, and vegetation zone line tracking using GPS. The conclusions of this study can be summarized as follows: (1) The ground level of the swash zone (sandy beach) on Jinu-do is rising, and the vegetation zone line, which is the boundary of the coastal sand dunes, shows a tendency to move forward toward the open sea. The vegetation zone line is developing particularly strongly in the offshore direction in areas where the ground level is elevated by more than 1.5 m. (2) The spatial distributions of incident waves differed due to variations in the water depth at the front of the beach, and the wave run-up in the swash zone also displayed complex spatial variations. With a large wave run-up, coastal debris may reach the vegetation zone line, but if the run-up is smaller, coastal debris is more likely to deposit in the form of an independent island on the beach. The deposited coastal debris can then become a factor determining which vegetation zone line advances or retreats. Finally, based on the results of this investigation, a schematic concept of the mechanisms of interaction between the coastal debris and the coastal vegetation zone line due to wave action was derived.