• Title/Summary/Keyword: 대응탄

Search Result 43, Processing Time 0.031 seconds

Intelligent Hexapod robot for the support walking of the aged (고령자 보행 지원을 위한 지능형 6족 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.534-539
    • /
    • 2008
  • This paper is about intelligent hexapod robot for the support walking of the aged person. The robot using various sensors and small camera has various abilities of forward backward walking, turing left or right, control the speed of walking, avoiding the obstacles and detecting risky situation of fire or gas. To let the aged feel soft and safe walking, we used special servo motor and developed hexapod walking mechanism and effective algorithm.

  • PDF

Take-Over Time Determination for High-Velocity Targets in a Multiple Radar System (다중 레이다 시스템의 고속표적 인계 시점 결정기법 연구)

  • Park, Soon-Seo;Jang, Dae-Sung;Choi, Han-Lim;Kim, Eun-Hee;Sun, Woong;Lee, Jong-Hyun;Yoo, Dong-Gil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • A multiple radar system is comprised of early warning radar for fast detection of a target and air defense radar for precision intercept. For this reason, target take-over process is required between the two radars. The target take-over should be performed at an appropriate time by consideration of stable tracking and effective fire control. In this paper, operation characteristics of multiple radar system are analyzed and target take-over time determination method using estimation of target tracking performance is proposed for high-velocity targets. The proposed method is validated with ballistic target defense scenarios in the developed integrated simulator.

Butane Working Capacity Evaluation of HC Adsorption Filter for Evaporative Gas to Satisfy PZEV Regulation (PZEV 대응 증발가스 흡착필터의 부탄 흡탈착 능력 평가)

  • Kim, Deok-Jung;Lee, Gee-Soo;Kim, Hyun-Chul;Heo, Hyung-Seok;Na, Byung-Chul;Choi, Seung-Bae;Ra, Wan-Yong;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.133-138
    • /
    • 2009
  • The continued rise in the number of automobiles on the roads is prompting air pollution to emerge as a serious problem due to the harmful exhaust gas emissions throughout the world. Specifically, based on the exhaust gas regulation in North America represented by PZEV, the regulation on evaporative emission, which originates from the intake manifold system when the engine is stopped, is substantially being intensified. And the technology that can meet and satisfy these regulations has been needed. This study aimed to analyze and evaluate the butane working capacity (BWC) of HC adsorption filter according to the shape of it, which was developed to reduce evaporative emission, and the effect of HC adsorption filter on the engine performance. As a results, HC adsorption filter of the plate type, which was improved compared to that of the corrugated type and also became thinner, indicates higher absorption performance compared to the corrugated one. The absorption performance of the honeycomb type, derived from improving the shape of plate type, is 33.5% higher than that of the corrugated type. However, there was no significant difference in engine performance in all shapes.

Approaching Target above Ground Tracking Technique Based on Noise Covariance Estimation Method-Kalman Filter (잡음 공분산 추정 방식을 적용한 칼만필터 기반 지면밀착 접근표적 추적기법)

  • Park, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.810-818
    • /
    • 2017
  • This paper presents the approaching target above ground tracking based on Kalman filter applied to the proximity sensor for the active defense system. The proximity sensor located on the front of the countermeasure is not easy to detect when the anti-tank threat enters a fragment dispersion range due to limited antenna beamwidth. In addition, it is difficult for the proximity sensor to detect the anti-tank threat accurately at a terrestrial environment including various clutters. To solve these problems, this study presents the approaching target above ground tracking based on Kalman filter and applies the novel estimation method for a noise covariance matrix to improve a tracking performance. Then, a high tracking performance of Kalman filter applied the proposed noise covariance matrix is presented through field firing test results and the validity of the proposed study is examined.

The Study of Economic Feasibility of Wood Pellet in Domestic Power Plants Sector (국내 발전부문에서의 목재펠릿 경제성 연구)

  • Jeong, Nam-Young;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.251-257
    • /
    • 2010
  • Korea have a plan to enforce the Renewable Portfolio Standard(RPS) in 2012 for climate change action and effective use of energy but because of lack of renewable energy resources and limits of technology development, it will be hard to fullfill a target for RPS obligation in domestic power generation sector and woodchip biomass cofiring with coal combustion is the one of the alternative methods of the goal. Woodchip biomass cofiring with coal combustion is easy to approach technical design and has competitiveness of $CO_2$ & renewble energy certificate benefit and also has much lower generation cost than any other renewable energy resources. Because of that reason, woodchip biomass cofiring with coal combustion should be needed to fullfill the goal for RPS obligation in domestic power generation sector with midlong-term direction.

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

The Development of a Precision BLDC Servo Position Controller for the Composite Smoke Bomb Rotational Driving System (복합연막탄 선회구동장치를 위한 정밀 BLDC 서보 위치 제어기 개발)

  • Koo, Bon-Min;Park, Moo-Yurl;Choi, Jung-Keyung;Choi, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.951-954
    • /
    • 2005
  • This paper presents a study on the accuracy position Controller design for the Composite Smoke Bomb Rotational driving system using a BLDC servo motor. Function of Smoke Bomb is blind in the enermy's sight so that need to high response. The BLDC servo motor controller was designed with DSP(TMS320VC33), IGBT(Insulated Gate Bipolar. Transistor), IGBT gate driver and CPLD(EPM7128). This paper implements those control with vector control and MIN-MAX PWM. Vector control requires information about rotor positions, a resolver should be used to achieve that. The main controller is implemented with a TMS320VC33 high performance floating-point DSP(Digital Signal Process) and PWM Generator is embodied using EPM7128.

  • PDF

Theoretical Analysis of the Lock-on Range of a Man-portable Air Defense System Under Foggy Conditions with the Radiative-transfer Equation (복사전달방정식을 활용한 안개 조건에서의 휴대용 대공 유도미사일 Lock-on range에 대한 이론적 분석)

  • Seok, In Cheol;Lee, Chang Min;Hahn, Jae W.
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • MANPADS (man-portable air defense system) is a counterweapon system against enemy aircraft, tracking the MWIR (mid-wavelength of infrared) signature of the plume. Under foggy conditions, however, multiple scattering phenomenon caused by the particles affects the MWIR transmittance, and the MANPADS detection performance. Therefore, in this study we analyzed the lock-on range of MANPADS with varying fog conditions and plume characteristics. To analyze the optical extinction properties and transmittance in fog, Mie scattering theory and analytic solution of the radiative-transfer equation are utilized. In addition, we used flare signature as an alternative MWIR light source. We confirmed that the lock-on range could be noticeably reduced under conditions of mist, and proportional to the flare temperature.

Analysis of the Engagement Effects of DIRCM against a Man Portable Air Defense System (휴대용대공유도탄에 대응하는 지향성적외선방해장비의 교전효과 분석)

  • Jeong, Chunsik
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • A MANPADS(Man Portable Air Defense System), which tracks infrared energy, is light enough for individuals to carry and can against to a variety of aircraft, making it widely deployed around the world, posing a major threat to aircraft. A flare has been developed as an IRCM(Infrared Countermeasures) that protects the life of friendly aircraft and combatants by deceiving such guided missiles. However, DIRCM, which can overcome the problems of existing IRCM, is being developed mainly in some developed countries, and the need for it has been increasing gradually. This paper modeled first generation IR seeker of AM modulation method, the second generation IR seeker of FM modulation method, and the third generation IR seeker of pulse modulation method among various MANPADS, and modeled the scattering light phenomenon in the seeker when laser beams are investigated in DIRCM. Using this, jamming simulations were performed in various engagement environments of the MANPADS and aircraft equipped with DIRCM, and the miss distance of the guided missiles and aircraft were analyzed. Simulation results show that DIRCM, which irradiates a modulated laser beam with one jamming code, deceives both first, second and third generation MANPADS at 1km and 2km of engagement distance. In particular, the survival rate of aircraft equipped with DIRCM increased when the distance of engagement increased from 1km to 2km, and the survival rate was at least 99% at 2km of engagement distance.

Status and Perspective of Biomass Co-firing to Pulverized Coal Power Plants (미분탄 석탄화력발전에서의 바이오매스 혼소 동향 및 전망)

  • Yang, Won
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.525-529
    • /
    • 2016
  • Biomass co-firing to existing thermal power plants is one of the most economical and efficient way to reduce $CO_2$ emission from the plant. There are several methods of co-firing and it can be categorized into (1) Parallel co-firing, (2) Indirect co-firing, and (3) Direct co-firing. Parallel co-firing is the most expensive way to high-ratio co-firing because it requires biomass dedicated boiler. Direct co-firing is widely used because it does not need high capital cost compared with the other two methods. Regarding the direct co-firing, it can be classified into three methods- Method 1 does not need retrofit of the facilities because it uses existing coal mills for pulverizing biomass fuels. In this case high-ratio co-firing cannot be achieved because of poor grindability of biomass fuels. Method 2 needs biomass-dedicated mills and revision of fuel streams for the combustion system, and Method 3 needs additional retrofit of the boiler as well as biomass mills. It can achieve highest share of the biomass co-firing compared with other two methods. In Korea, many coal power plants have been adopting Method 1 for coping with RPS(Renewable portfolio standards). Higher co-firing ratio (> 5% thermal share) has not been considered in Korean power plants due to policy of limitation in biomass co-firing for securing REC(Renewable Energy Certificate). On the other hand, higher-share co-firing of biomass is widely used in Europe and US using biomass dedicated mills, following their policy to enhance utilization of renewable energy in those countries. Technical problems which can be caused by increasing share of the biomass in coal power plants are summarized and discussed in this report. $CO_2$ abatement will become more and more critical issues for coal power plants since Paris agreement(2015) and demand of higher share of biomass in the coal power plants will be rapidly increased in Korea as well. Torrefaction of the biomass can be one of the best options because torrefied biomass has higher heating value and grindability than other biomass fuels. Perspective of the biomass torrefaction for co-firing is discussed, and economic feasibility of biomass torrefaction will be crucial for implementation of this technology.