• 제목/요약/키워드: 대응기법

검색결과 2,262건 처리시간 0.025초

토픽모델링을 활용한 COVID-19 학술 연구 기반 연구 주제 분류에 관한 연구 (A study on the classification of research topics based on COVID-19 academic research using Topic modeling)

  • 유소연;임규건
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.155-174
    • /
    • 2022
  • 2020년 1월부터 2021년 10월 현재까지 COVID-19(치명적인 호흡기 증후군인 코로나바이러스-2)와 관련된 학술 연구가 500,000편 이상 발표되었다. COVID-19와 관련된 논문의 수가 급격하게 증가함에 따라 의료 전문가와 정책 담당자들이 중요한 연구를 신속하게 찾는 것에 시간적·기술적 제약이 따르고 있다. 따라서 본 연구에서는 LDA와 Word2vec 알고리즘을 사용하여 방대한 문헌의 텍스트 자료로부터 유용한 정보를 추출하는 방안을 제시한다. COVID-19와 관련된 논문에서 검색하고자 하는 키워드와 관련된 논문을 추출하고, 이를 대상으로 세부 주제를 파악하였다. 자료는 Kaggle에 있는 CORD-19 데이터 세트를 활용하였는데, COVID-19 전염병에 대응하기 위해 주요 연구 그룹과 백악관이 준비한 무료 학술 자료로서 매주 자료가 업데이트되고 있다. 연구 방법은 크게 두 가지로 나뉜다. 먼저, 47,110편의 학술 논문의 초록을 대상으로 LDA 토픽 모델링과 Word2vec 연관어 분석을 수행한 후, 도출된 토픽 중 'vaccine'과 관련된 논문 4,555편, 'treatment'와 관련된 논문 5,791편을 추출한다. 두 번째로 추출된 논문을 대상으로 LDA, PCA 차원 축소 후 t-SNE 기법을 사용하여 비슷한 주제를 가진 논문을 군집화하고 산점도로 시각화하였다. 전체 논문을 대상으로 찾을 수 없었던 숨겨진 주제를 키워드에 따라 문헌을 분류하여 토픽 모델링을 수행한 결과 세부 주제를 찾을 수 있었다. 본 연구의 목표는 대량의 문헌에서 키워드를 입력하여 특정 정보에 대한 문헌을 분류할 수 있는 방안을 제시하는 것이다. 본 연구의 목표는 의료 전문가와 정책 담당자들의 소중한 시간과 노력을 줄이고, 신속하게 정보를 얻을 수 있는 방법을 제안하는 것이다. 학술 논문의 초록에서 COVID-19와 관련된 토픽을 발견하고, COVID-19에 대한 새로운 연구 방향을 탐구하도록 도움을 주는 기초자료로 활용될 것으로 기대한다.

텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석 (Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques)

  • 정지송;김호동
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.33-54
    • /
    • 2021
  • 최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.