상품 온톨로지는 온톨로지 (Ontology) 구성요소인 개념 (Concept) 과 속성 (Property)이 상품 도메인에 특화된 온틀로지이다. 본 논문에서는 대용량을 특징으로 하는 상품 온톨로지를 표현함에 적용되어 질 수 있는 Hyperbolic Tree, Cluster Map, 그래프 비주얼라이제이션을 살펴보고, 계층을 갖는 개념을 표현하는 데 좋은 Hyperbolic과, 속성을 잘 표현 할 수 있는 Cluster Map을 상품 온톨로지에 유리한 비주얼라이제이션으로서 제안한다.
가정기반진리관리 시스템(ATMS)은 추론 시스템의 추론 과정을 저장하고 비단조추론을 지원할 수 있는 도구이다. 또한 의존기반 backtracking을 지원하므로 매우 넓은 공간 탐색 문제를 해결 할 수 있는 강력한 도구이다. 모든 추론 과정을 기록하고, 특정한 컨텍스트에서 지능형시스템의 Belief를 매우 빠르게 확인하고 비단조 추론 문제에 대한 해결책을 효율적으로 제공할 수 있게 한다. 그러나 최근 데이터의 양이 방대해지면서 기존의 단일 머신을 사용하는 경우 문제 해결 프로그램의 대용량의 추론과정을 저장하는 것이 불가능하게 되었다. 대용량 데이터에 대한 문제 해결 과정을 기록하는 것은 많은 연산과 메모리 오버헤드를 야기한다. 이러한 단점을 극복하기 위해 본 논문에서는 Apache Spark 환경에서 functional 및 객체지향 방식 기반의 점진적 컨텍스트 추론을 유지할 수 있는 방법을 제안한다. 이는 가정(Assumption)과 유도과정을 분산 환경에 저장하며, 실체화된 대용량 데이터셋의 변화를 효율적으로 수정가능하게 한다. 또한 ATMS의 Label, Environment를 분산 처리하여 대규모의 추론 과정을 효과적으로 관리할 수 있는 방안을 제시하고 있다. 제안하는 시스템의 성능을 측정하기 위해 5개의 노드로 구성된 클러스터에서 LUBM 데이터셋에 대한 OWL/RDFS 추론을 수행하고, 데이터의 추가, 설명, 제거에 대한 실험을 수행하였다. LUBM2000에 대하여 추론을 수행한 결과 80GB데이터가 추론되었고, ATMS에 적용하여 추가, 설명, 제거에 대하여 수초 내에 처리하는 성능을 보였다.
본 논문에서는 RDB로부터 가상적 변환에 의해 생성되는 OWL 온톨로지의 질의 응답을 위하여 OWL을 위한 질의어인 SPARQL-DL의 구현 방법을 제안한다. 제안하는 SPARQL-DL 프로세서는 입력된 SPARQL-DL 질의문을 내부에서 SQL 질의문으로 변환하여 실행시킨다. 이러한 질의 처리 방식은 두 가지의 장점이 있다. 첫째, RDB로부터 생성된 OWL 온톨로지를 저장하기 위한 별도의 저장소가 요구되지 않는다. 둘째, 대용량 ABox 추론에 문제점을 나타내는 Tableau 알고리즘 기반의 추론기의 사용 없이도 RDB 인스턴스로부터 생성된 대용량 ABox가 서비스 될 수 있다. 본 논문의 SPARQL-DL 질의문으로부터 SQL 질의문을 생성하는 알고리즘은 RDB와의 연결 수립에 따른 오버헤드를 최소화하기 위하여 입력된 하나의 SPARQL-DL 질의문이 하나의 SQL 질의문으로 변환되도록 설계되어있다.
웹상에서 생성 공유되는 데이터는 다양한 분야에서 대용량으로 생성되고, 콘텐츠가 사회적 관심에 따라 지속적으로 변화 한다는 특징이 있다. 이로 인하여, 웹 데이터를 분석하여 유용한 정보를 얻기 위해서는 (a) 대용량의 데이터를 빠르게 처리하고, (b) 사용자가 쉽게 정보를 찾을 수 있도록 데이터를 구성하는 것이 필수적이다. 이러한 두 가지 측면 중에서, 본 논문은 사용자의 정보 검색 부담을 덜어주기 위해 온톨로지를 활용한 데이터 구성 방법을 제시한다. 특히, 본 논문에서는 콘텐츠가 사회적 관심에 따라 지속적으로 변화하는 웹 데이터의 특성을 고려하여, 데이터 콘텐츠를 인덱싱하기에 가장 적합한 온톨로지를 기존에 존재하는 범용 온톨로지로부터 추출한다. 또한, 사례 연구를 통하여 제시한 알고리즘의 유용성을 보인다.
근래에 들어와서 각광받고 있는 시맨틱 웹과 관련기술의 부상으로 온톨로지에 대한 관심이 증대되었으며, 그중에서도 고난이도의 추론을 요구하는 의미기반 시맨틱 검색을 위해서 온톨로지를 효율적으로 저장하고 검색하는 다양한 기법들이 활발히 연구되어왔다. W3C에서의 표준권고안은 RDFS, OWL을 활용하도록 하고 있다. 하지만 메모리 기반으로 구현되어 있는 에디터나 추론엔진들, 온톨로지의 원형을 그대로 유지하여 저장하는 트리플 저장소를 이용하여 대용량 온톨로지를 처리하기에는 성능상의 한계가 있다. 따라서 이를 해결하기 위해 관계형 데이터베이스 엔진을 이용하여, 온톨로지를 저장하고 효율적으로 활용하기 위한 다양한 방식의 추론엔진과 질의처리 알고리즘들이 제안되었으나, 온톨로지 프로퍼티의 다섯 가지 핵심특성에 따른 추론 결과를 완전하게 획득하지는 못하고 있는 실정이다. 본 논문에서는 하이퍼 큐브 인덱스(Hyper Cube Index)를 제안함으로서 관계형 데이터베이스에 저장한 온톨로지를 효율적으로 검색할 수 있는 환경을 제공하는 것은 물론, 온톨로지 프로퍼티의 핵심특성을 빠짐없이 투영하여 숨겨진 추론 결과를 획득할 수 있는 방안을 제시한다.
협업은 둘 이상의 사람들이 하나의 업무 또는 목적을 달성하기위해 공동으로 협력하여 일하는 것이다. 최근 개인 및 조직 간 협업 범위가 공동분석, 데이터 연계, 서비스 조합 등으로 확장되고 대용량 데이터 공유 및 실시간 연계분석 활동이 증대되면서 협업 지향적인 시스템 설계와 개발이 중요시 되고 있다. 특히 스마트워크와 지능화된 협업 기반은 데이터, 프로세스, 서비스, 사람 간의 다차원 연계와 실시간 활용, 의미 기반의 기계적 협력을 전재로 하고 있다. 본 연구에서는 Data, Process, Service, People 측면의 4가지 계층으로 전사적 자원을 설계하고 메타 메타데이터 기반의 온톨로지 분석을 통해 자원 간의 연계와 조합을 지원하는 시스템을 설계했다. Data 계층은 프로세스별 Input, Output 정보를 식별하여 Data의 메타 정보를 정의하고 이를 검색 에이전트가 색인하여 모델링에 참조할수록 한다. Process 계층은 BPMN모델을 확장한 exCPM의 개선 모델을 바탕으로 프로세스를 수행주체 간, 정보공유측면에서 프로세스를 분석했다. Service 계층은 협업지향적인 프로세스를 구성하는 컴포넌트를 서비스로 인식하고 프로파일을 통해 협업을 위한 검색과 프로세스를 연계지원하도록 설계 했다. 마지막으로 People계층은 자원, 프로세스, 서비스 등 시스템에 관여하는 참여자들의 메타정보를 정의하고 이를 온톨로지 기반의 모델에 통합하여 자동 검색되도록 설계했다. 이를 통해 프로세스와 서비스 측면에서 협업을 요구하는 에이전트와 일반 검색 사용자들이 프로세스 간 협업 자원을 파악하고 상호 관계를 분석할 수 있도록 하는 한편, 프로세스를 지원하는 컴포넌트와 서비스 간의 자동적인 조합을 통해 통합적 자원 협력과 실시간 협업 지원 기반을 제시했다.
최근 멀티미디어 정보의 양이 빠른 속도로 증가함에 따라 비디오 자료에 대한 효율적 관리는 매우 중요한 의미를 가지게 되었다. 비디오는 대용량적인 특성과 비정형적인 특성을 가지고 있어 신속하고 효율적으로 비디오 검색을 하기 위해서는 정확한 특징 정보를 추출하여 비디오 색인 구조를 구축해야 한다. 비디오 색인 구조는 전통의 데이터베이스와는 다른 모델링 방법과 검색 방법을 사용한다. 따라서 비디오 색인 구조에서 검색의 속도와 정확도를 향상시키기 위해서는 새로운 비디오 색인 구조가 필요하다. 본 논문에서는 의미적으로 비디오를 장면단위로 검색할 수 있는 비디오 온톨로지 시스템을 제안한다. 비디오 온톨로지 시스템은 장면의 내용에 대한 키워드를 구조화 시킨 장면이름 온톨로지와 장면이 가지는 특징 정보에 대한 정보를 가지는 장면 모델 온톨로지로 구성된다. 장면 이름 온톨로지는 색인된 내용에 대한 의미적 검색이 가능하도록 단어들을 트리구조로 저장된다. 그리고 장면 모델 온톨로지는 색상, 모양, 재질과 같은 저수준 정보와 객체, 이벤트 같은 고수준 정보의 의미적 차이를 극복해 줌으로써 의미기반 검색이 가능하게 해준다.
본 논문에서는 functional 프로그래밍과 분산 메모리 환경인 Spark를 통해 SPARQL 질의문 처리의 오버헤드를 줄일 수 있는 방법을 제안한다. 최근 몇 년간 시멘팁웹의 RDF 온톨로지 데이터는 폭발적으로 증가하고 있기 때문에, 대용량 온톨로지 데이터에 대한 질의문을 효율적으로 처리할 수 있는 방법이 주요 쟁점으로 떠오르고 있다. SPARQL 질의문 처리에 대한 기존의 연구들은 하둡의 맵리듀스 프레임워크에 초점을 맞추고 있다. 그러나 하둡은 분산 파일 처리를 기반의 작업을 수행하므로 성능 저하가 발생할 수 있다. 따라서 질의문 처리 속도를 향상 시키기 위해 본 논문에서는 분산 메모리 시스템을 통해 질의문을 처리할 수 있는 방법을 제안한다. 또한 SPARQL 질의어 사이의 Binding 값을 Propagation하기 위해서 Spark의 Join방식, Functional 프로그램의 Map, Filter 방식, Spark의 캐시 기능을 활용 하는 방식을 제안하고 있다. 본 논문의 실험 결과는 다른 기법들과 비교하여 높은 성능을 얻었다. 특히 현재 가장 빠른 성능을 보이는 SPARQL 질의 엔진인 Sempala와 유사하다는 결과를 얻었다.
최근 빅데이터의 시대가 도래하여 다양한 분야로부터 다량의 지식을 얻을 수 있다. 수집된 지식은 정형화된 형태의 지식으로 가공하여 표현되며, 그 중 W3C의 온톨로지 표준 언어인 OWL이 대표적인 정형화 표현 형식이다. 이렇게 표현된 대용량의 온톨로지로부터 내재된 정보를 도출하기 위해 다양한 방법의 심볼릭 추론(Symbolic Reasoning) 연구가 활발하게 진행되고 있다. 그러나 대부분의 추론 연구들은 서술논리(Description Logic)표현 기반의 제한적인 규칙표현을 지원하며 실생활 기반의 서비스를 구축하기에는 많은 제약이 따른다. 또한 잘못된 지식으로부터 도출된 결과는 규칙들 사이의 종속관계에 따라 연쇄적으로 잘못된 지식이 생산될 수 있기 때문에 이러한 잘못된 지식에 대한 처리를 위한 지식관리가 필요하다. 따라서 본 논문에서는 해당 문제를 해결하기 위해 SWRL(Semantic Web Rule Language) 기반의 추론과 ATMS(Assumption-based Truth Maintenance System)간의 결합을 통해 새롭게 도출된 지식에 대한 관리를 할 수 있는 SWAT(SWRL + ATMS) 시스템을 제안한다. 또한 이 시스템은 대용량 데이터를 처리하기 위해 분산 인-메모리 프레임워크 기반의 SWRL추론과 ATMS를 병합 구축하였으며 이를 바탕으로 웹 형태의 ATMS 모니터링 시스템을 통하여 사용자가 손쉽게 잘못된 지식을 검색 및 수정할 수 있도록 한다. 본 논문에서 제안하는 방법에 대한 평가를 위해 LUBM(Lehigh University Benchmark)데이터 셋을 사용하였으며, 대용량 데이터에 대한 SWRL 추론과 잘못 추론된 정보에 대한 삭제를 통해 효율적인 추론과 관리가 가능한 결합 방법임을 증명한다.
온톨로지란 실세계에 존재하는 사물 및 개념, 그리고 용어들 간의 관계들을 컴퓨터가 이해할 수 있는 형태로 표현한 것이다. 온톨로지 구축에 있어서 대용량 코퍼스의 활용은 해당코퍼스에서 등장하는 용어들과 이들 사이에서 나타나는 문자열을 일종의 패턴으로 취급하여 특정 패턴과 함께 나타나는 용어 쌍들을 해당 패턴이 대표하는 의미 관계로 설정하는 방식을 취한다. 그러나 기존의 방법은 주로 두 용어들 사이에서 나타나는 문자열만을 고려하여 패턴을 추출하기 때문에 해당 문장에 포함된 보다 다양한 문장 정보들을 활용할 수 없다. 본 논문은 이러한 한계점을 감안하여, 용어 쌍 사이에서 나타나는 문자열과 주변 동사 정보를 함께 고려함으로써 패턴의 정교성을 향상시키는 방법을 제안한다. 또한 동사들의 동의어를 활용하여 다양한 용어들을 포괄할 수 있는 일반화된 패턴을 구축한다. 본 방법론은 is-a 관계의 경우 64%, part-of 관계의 경우 83%, made-of 관계의 경우 73%, use 관계의 경우 72%의 정확률을 보였으며 모두 기존 방법보다 향상된 결과를 가져왔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.