• Title/Summary/Keyword: 대역어 선택

Search Result 18, Processing Time 0.023 seconds

Selection of Postpositions and Translated Words by Sentence Pattern in the English-Korean Machine Translation (영-한 기계번역에서 문형에 의한 조사 및 대역어 선택)

  • Park, Y.J.;Kim, N.S.;Lee, J.S.;Lee, Y.S.
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.105-109
    • /
    • 1999
  • 영-한 기계번역 중 변환 단계에서 한국어 문장을 생성하기 위해서는 구구조 변환 후 조사 및 대역어 선택으로 이루어진다. 그러나 하나의 영어 단어는 여러 개의 한국어 의미들을 가지고 있기 때문에 문장에서 사용된 영어의 정확한 의미에 해당하는 한국어 대역어를 선택하는 것은 번역의 질을 높이고 시스템의 성능에 매우 중요한 역할을 한다. 특히 용언 및 체언의 대역어 선택은 문장에서 서로 간의 의미적인 관계를 고려하여야 올바른 대역어를 선택할 수 있다. 기존에는 전자 사전에 용언과 체언간의 연어 정보(collocation information)를 구축하여 대역어 선택의 문제를 해결하려고 하였으나 연어 정보가 사전에 존재하지 않을 때 올바른 대역어를 선택할 수 없었다. 또한 용언과 체언의 관계를 나타내는 조사를 선택하기 위하여 격(case)을 세분화하여 사전을 구축하였으나 격의 분류 및 사전을 구축할 경우 격을 선택하는 어려움이 있었다. 이에 따라 본 논문에서는 문형(sentence pattern)에 의한 방법으로 용언의 대역어 및 용언이 갖는 필수격 체언의 조사와 대역어 선택방법을 제안한다. 문형의 구조적인 정보에는 용언과 체언의 의미적 역할(thematic role)을 하는 조사 및 용언이 갖는 필수격 체언의 의미 자질(semantic feature)을 갖고 있다. 이러한 의미 자질을 wordnet과 한/영 및 영/한 사전을 이용하여 의미 지표(semantic marker)를 갖는 문형 사전을 구축한다. 또한 의미 지표를 갖는 문형 사전을 기반으로 조사 및 대역어 선택 알고리즘을 개발한다.

  • PDF

2-Level English-Korean Target Word Selection Using Vectors (벡터를 사용한 2단계 영한 대역어 선택)

  • Lee, Ki-Young;Park, Sang-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.473-476
    • /
    • 2003
  • 영한 자동번역 시스템에서 대역어 선택 모듈은 어휘 변환을 수행한다. 일반적으로 영어 단어는 다양한 한국어 단어로 번역될 수 있는 의미적 모호성을 지니고 있으며, 고품질의 영한 자동번역 결과를 제공하기 위해서는, 해당 문맥에 가장 적합한 한국어 단어가 선택되어야 한다. 본 논문에서는 영어의 명사 어휘에 대하여, 벡터를 사용하는 2 단계 영한 대역어 선택 기법을 제안한다. 벡터를 사용하는 2 단계 대역어 선택 방식은 첫 번째 단계에서, 원문에서 사용된 영어 명사의 의미를 결정하고, 두 번째 단계에서, 해당 의미를 지니는 유사 한국어 대역어 가운데, 생성될 한국어 문맥에 맞는 적합한 한국어 대역어를 선택한다. 또한 제안하는 방법의 타당성을 검증하기 위해 현재 우리가 개발중인 Tellus-EK 영한 자동번역 시스템에 적용한 결과를 논한다.

  • PDF

The Composition of Korean-English Transfer Dictionary for Proper Selection of Verb Translation (적절한 동사 대역어 선택을 위한 한영 변환 사전 구성)

  • Song, Jung-Keun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.294-301
    • /
    • 2001
  • 기계번역이 인간의 언어 능력을 기계로 구현한다는 점에서 전산학적 성격이 강하다면, 변환 사전은 인간의 어휘부(lexicon) 정보를 그대로 기계에 표상한다는 점에서 언어학적 성격이 강하다. 여기서는 다양한 어휘부 정보 중에서 한영 기계번역에서 필요한 언어학적 정보를 추출하고 이러한 정보를 바탕으로 적절한 동사 대역어 선택을 위한 변환 사전의 모형을 만들어 보고자 하였다. 한영 기계번역에서 적절한 동사 대역어 선택의 어려움은 한국어 동형어 처리 문제와 한국어에서는 포착되지 않지만 영어로 번역하는 과정에서 발생하는 영어 표현의 특수성 때문에 기인한 것으로 볼 수 있다. 이 논문에서는 이러한 문제를 논항과 문법 형태소, 선택제약, 개별 어휘 등의 기초적인 언어학적 개념을 이용한 변환사전을 통해 해결한다. 또한 동사 대역어 선택에 영향을 미치는 이러한 개별적인 요인들은 실제 변환사전의 기술에 있어서는 복합적으로 적용됨을 동사 '먹다'의 기술을 통해 확인할 수 있다.

  • PDF

Korean-to-English Query Translation based on Multilingual Ontology in Cross-Language Text Retrieval (교차언어 문서검색에서 다국어 온톨로지에 기반한 한영 질의어 변환)

  • Chun, Jung-Hoon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.43-49
    • /
    • 1999
  • 본 논문에서는 교차언어 문서검색(CLTR: Cross-Language Text Retrieval)에서의 한-영 질의어 변환을 다룬다. 질의어 변환시 영어 대역어 획득과정에서는 다음 두 가지를 고려한다. 첫째, 한국어 질의어를 구성하는 단어가 한가지 개념을 기호화하지만 이에 대응되는 영어 대역어들이 하나 이상인 경우이다. 둘째, 질의어 구성 단어가 둘 이상의 개념들을 기호화하는 다의성을 지닌 경우이다. 전자의 경우는 영어 대역어들이 모두 동일한 개념, 또는 유사한 개념을 나타내므로 그대로 검색에 이용한다 해도 검색 성능을 크게 좌우하지 않지만, 후자의 경우는 모든 개념을 다 검색에 이용하게 되면 정확률(precision)이 크게 떨어지게 된다. 이에 본 연구에서는 개념 선택단계와 선택된 개념의 영어 대역어들에 가중치를 주는 가중치 부가단계로 나누어 질의어 변환을 수행한다. 본 논문의 질의어 변환에서 영어 대역어는 대역사전 대신 다국어 온톨로지인 KAIST 분류어휘표와 한영 음차복원 모듈을 통해 얻어진다.

  • PDF

Target Word Selection for English-Korean Machine Translation System using Multiple Knowledge (다양한 지식을 사용한 영한 기계번역에서의 대역어 선택)

  • Lee, Ki-Young;Kim, Han-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.75-86
    • /
    • 2006
  • Target word selection is one of the most important and difficult tasks in English-Korean Machine Translation. It effects on the translation accuracy of machine translation systems. In this paper, we present a new approach to select Korean target word for an English noun with translation ambiguities using multiple knowledge such as verb frame patterns, sense vectors based on collocations, statistical Korean local context information and co-occurring POS information. Verb frame patterns constructed with dictionary and corpus play an important role in resolving the sparseness problem of collocation data. Sense vectors are a set of collocation data when an English word having target selection ambiguities is to be translated to specific Korean target word. Statistical Korean local context Information is an N-gram information generated using Korean corpus. The co-occurring POS information is a statistically significant POS clue which appears with ambiguous word. The experiment showed promising results for diverse sentences from web documents.

  • PDF

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.

Phrase-Pattern-based Korean-to-English Machine Translation System using Two Level Word Selection (두단계 대역어선택 방식을 이용한 구단위 패턴기반 한영 기계번역 시스템)

  • Kim, Jung-Jae;Park, Jun-Sik;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.209-214
    • /
    • 1999
  • 패턴기반기계번역방식은 원시언어패턴과 그에 대한 대역언어패턴들의 쌍을 이용하여 구문분석과 변환을 수행하는 기계번역방식이다. 패턴기반 기계번역방식은 번역할 때 발생하는 애매성을 해소하기 위해 패턴의 길이를 문장단위까지 늘이기 때문에, 패턴의 수가 급증하는 문제점을 가진다. 본 논문에서는 패턴의 단위를 구단위로 한정시킬 때 발생하는 애매성을 해소하는 방법으로 시소러스를 기반으로 한 두단계 대역어 선택 방식을 제안함으로써 효과적으로 애매성을 감소시키면서 패턴의 길이를 줄이는 모델을 제시한다. 두단계 대역어 선택 방식은 원시언어의 한 패턴에 대해 여러 가능한 목적언어의 대역패턴들이 있을 때, 첫 번째 단계에서는 원시언어 내에서의 제약조건에 맞는 몇가지 대역패턴들을 선택하고, 두번째 단계에서는 목적언어 내에서의 제약조건에 가장 적합한 하나의 대역패턴을 선택하는 방식이다. 또한 본 논문에서는 이와 같은 모델에서 패턴의 수가 코퍼스의 증가에 따른 수렴가능성을 논한다.

  • PDF

Translation of Auxiliary Verbs "-reru,-rareru" in Japanese-Korean Machine Translation (일한 기계번역에서 조동사 "-reru, -rareru"의 번역처리)

  • Kim, Jung-In;Moon, Kyong-Hi;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.261-268
    • /
    • 1997
  • 일본어에서 조동사 "-reru, -rareru"는 '피동', '가능', '자발', '존경' 등의 의미로 두루 쓰이고 있다. 일한 번역에서 이들은 여러 가지 대역어로 나타나며 일정한 규칙이나 패턴을 취하지 않으므로, 기계 번역시 조동사 "-reru, -rareru"는 그 처리가 쉽지 않다. 더구나, 조동사 "-reru, -rareru"는 일본어에서 높은 빈도로 등장하여 무시하기 어렵고 의미별 분포가 고루 퍼져 있어, 대표적 대역어인 "-아/어/여 지다. -되다" 등으로만 대응시킬 경우의 번역 에러는 의외로 치명적이다. 따라서, "-reru, -rareru"의 번역을 고려한 특수 처리를 행할 필요가 있다. 먼저, 본 논문에서는 조동사 "-reru, -rareru"가 포함된 아사히 신문 가사의 5,800여 문장을 대상으로 각각의 의미에 대한 분포 및 한국어 대역어의 빈도를 조사하였다. 대역어는 크게 8종류의 형태로 나누었으며 각 동사별로 "-reru, -rareru"와 결합된 경우의 의미 출현 빈도를 참고하여 대응 가능한 대역어 형태들을 미리 결정하였다. 그리고, 대역어가 여러 개 존재하는 경우는 패턴 매칭을 통하여 적절한 대역어를 선택할 수 있도록 하였다. 그 결과, 약 87%의 "-reru, -rareru"가 적절한 대역어로 번역되어, 본 논문에서 제시한 의미 출현 빈도에 기반한 각 동사별 대역어 형태 결정 방법이 "-reru, -rareru"의 다의성 해소에 유효하다고 판단된다.

  • PDF

Practical Target Word Selection Using Collocation in English to Korean Machine Translation (영한번역 시스템에서 연어 사용에 의한 실용적인 대역어 선택)

  • 김성묵
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.2
    • /
    • pp.56-61
    • /
    • 2000
  • The quality of English to Korean Machine Translation depends on how well it deals with target word selection of verbs containing enormous ambiguity. Verb sense disambiguation can be done by using collocation, but the construction of verb collocations costs a lot of efforts and expenses. So, existing methods should be examined in the practical view points. This paper describes the practical method of target word selection using existing collocation and semantic distance computed from minimum semantic features of nouns.

  • PDF

Linguistic Modeling for Target Word Selection of Korean Adverbial Postpositions in a Multilingual MT-System (다국어 기계번역시스템에서 부사격 조사의 올바른 대역어 선정을 위한 언어학적 모델링)

  • Hong, Mun-Pyo;Choi, Sung-Kwon
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.310-316
    • /
    • 2001
  • 이 논문은 '에서', '으로'와 같은 한국어의 부사격 조사들을 다국어 기계번역 시스템에서 다룰 때 올바른 역어 선택을 위한 3단계 변환 방식과 이를 위한 부사격 조사의 언어학적 모델링 방법을 제시한다. 3단계 변환 방식은 부사격 조사의 의미 모호성 해소, 의사 중간언어표상 (Quasi-Interlingua Representation)으로의 변환, 전치사 선택의 3단계로 구성되어 있다. 본 논문에서 중점적으로 다루게 될 세번째 단계, 즉 영어나 독일어에서 한국어의 부사격 조사에 대한 전치사 선택의 단계에서 올바른 대역어 선정 방법론의 핵심이 되는 부사격 조사에 대한 언어학적 모델링을 위해 Pustejovsky (1995)의 생성 어휘부 이론 (Generative Lexicon Theory)을 도입한다. 이 논문에서 제시한 방법론은 그 타당성의 수학적 검증을 위해 통합기반 기계번역 시스템인 CAT2에서 구현되었으나, 방법론 자체는 특정 시스템에 제한됨 없이 범용적으로 적용될 수 있을 것이다.

  • PDF