Annual Conference on Human and Language Technology
/
1999.10e
/
pp.105-109
/
1999
영-한 기계번역 중 변환 단계에서 한국어 문장을 생성하기 위해서는 구구조 변환 후 조사 및 대역어 선택으로 이루어진다. 그러나 하나의 영어 단어는 여러 개의 한국어 의미들을 가지고 있기 때문에 문장에서 사용된 영어의 정확한 의미에 해당하는 한국어 대역어를 선택하는 것은 번역의 질을 높이고 시스템의 성능에 매우 중요한 역할을 한다. 특히 용언 및 체언의 대역어 선택은 문장에서 서로 간의 의미적인 관계를 고려하여야 올바른 대역어를 선택할 수 있다. 기존에는 전자 사전에 용언과 체언간의 연어 정보(collocation information)를 구축하여 대역어 선택의 문제를 해결하려고 하였으나 연어 정보가 사전에 존재하지 않을 때 올바른 대역어를 선택할 수 없었다. 또한 용언과 체언의 관계를 나타내는 조사를 선택하기 위하여 격(case)을 세분화하여 사전을 구축하였으나 격의 분류 및 사전을 구축할 경우 격을 선택하는 어려움이 있었다. 이에 따라 본 논문에서는 문형(sentence pattern)에 의한 방법으로 용언의 대역어 및 용언이 갖는 필수격 체언의 조사와 대역어 선택방법을 제안한다. 문형의 구조적인 정보에는 용언과 체언의 의미적 역할(thematic role)을 하는 조사 및 용언이 갖는 필수격 체언의 의미 자질(semantic feature)을 갖고 있다. 이러한 의미 자질을 wordnet과 한/영 및 영/한 사전을 이용하여 의미 지표(semantic marker)를 갖는 문형 사전을 구축한다. 또한 의미 지표를 갖는 문형 사전을 기반으로 조사 및 대역어 선택 알고리즘을 개발한다.
Proceedings of the Korea Information Processing Society Conference
/
2003.11a
/
pp.473-476
/
2003
영한 자동번역 시스템에서 대역어 선택 모듈은 어휘 변환을 수행한다. 일반적으로 영어 단어는 다양한 한국어 단어로 번역될 수 있는 의미적 모호성을 지니고 있으며, 고품질의 영한 자동번역 결과를 제공하기 위해서는, 해당 문맥에 가장 적합한 한국어 단어가 선택되어야 한다. 본 논문에서는 영어의 명사 어휘에 대하여, 벡터를 사용하는 2 단계 영한 대역어 선택 기법을 제안한다. 벡터를 사용하는 2 단계 대역어 선택 방식은 첫 번째 단계에서, 원문에서 사용된 영어 명사의 의미를 결정하고, 두 번째 단계에서, 해당 의미를 지니는 유사 한국어 대역어 가운데, 생성될 한국어 문맥에 맞는 적합한 한국어 대역어를 선택한다. 또한 제안하는 방법의 타당성을 검증하기 위해 현재 우리가 개발중인 Tellus-EK 영한 자동번역 시스템에 적용한 결과를 논한다.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.294-301
/
2001
기계번역이 인간의 언어 능력을 기계로 구현한다는 점에서 전산학적 성격이 강하다면, 변환 사전은 인간의 어휘부(lexicon) 정보를 그대로 기계에 표상한다는 점에서 언어학적 성격이 강하다. 여기서는 다양한 어휘부 정보 중에서 한영 기계번역에서 필요한 언어학적 정보를 추출하고 이러한 정보를 바탕으로 적절한 동사 대역어 선택을 위한 변환 사전의 모형을 만들어 보고자 하였다. 한영 기계번역에서 적절한 동사 대역어 선택의 어려움은 한국어 동형어 처리 문제와 한국어에서는 포착되지 않지만 영어로 번역하는 과정에서 발생하는 영어 표현의 특수성 때문에 기인한 것으로 볼 수 있다. 이 논문에서는 이러한 문제를 논항과 문법 형태소, 선택제약, 개별 어휘 등의 기초적인 언어학적 개념을 이용한 변환사전을 통해 해결한다. 또한 동사 대역어 선택에 영향을 미치는 이러한 개별적인 요인들은 실제 변환사전의 기술에 있어서는 복합적으로 적용됨을 동사 '먹다'의 기술을 통해 확인할 수 있다.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.43-49
/
1999
본 논문에서는 교차언어 문서검색(CLTR: Cross-Language Text Retrieval)에서의 한-영 질의어 변환을 다룬다. 질의어 변환시 영어 대역어 획득과정에서는 다음 두 가지를 고려한다. 첫째, 한국어 질의어를 구성하는 단어가 한가지 개념을 기호화하지만 이에 대응되는 영어 대역어들이 하나 이상인 경우이다. 둘째, 질의어 구성 단어가 둘 이상의 개념들을 기호화하는 다의성을 지닌 경우이다. 전자의 경우는 영어 대역어들이 모두 동일한 개념, 또는 유사한 개념을 나타내므로 그대로 검색에 이용한다 해도 검색 성능을 크게 좌우하지 않지만, 후자의 경우는 모든 개념을 다 검색에 이용하게 되면 정확률(precision)이 크게 떨어지게 된다. 이에 본 연구에서는 개념 선택단계와 선택된 개념의 영어 대역어들에 가중치를 주는 가중치 부가단계로 나누어 질의어 변환을 수행한다. 본 논문의 질의어 변환에서 영어 대역어는 대역사전 대신 다국어 온톨로지인 KAIST 분류어휘표와 한영 음차복원 모듈을 통해 얻어진다.
Journal of the Korea Society of Computer and Information
/
v.11
no.5
s.43
/
pp.75-86
/
2006
Target word selection is one of the most important and difficult tasks in English-Korean Machine Translation. It effects on the translation accuracy of machine translation systems. In this paper, we present a new approach to select Korean target word for an English noun with translation ambiguities using multiple knowledge such as verb frame patterns, sense vectors based on collocations, statistical Korean local context information and co-occurring POS information. Verb frame patterns constructed with dictionary and corpus play an important role in resolving the sparseness problem of collocation data. Sense vectors are a set of collocation data when an English word having target selection ambiguities is to be translated to specific Korean target word. Statistical Korean local context Information is an N-gram information generated using Korean corpus. The co-occurring POS information is a statistically significant POS clue which appears with ambiguous word. The experiment showed promising results for diverse sentences from web documents.
In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.209-214
/
1999
패턴기반기계번역방식은 원시언어패턴과 그에 대한 대역언어패턴들의 쌍을 이용하여 구문분석과 변환을 수행하는 기계번역방식이다. 패턴기반 기계번역방식은 번역할 때 발생하는 애매성을 해소하기 위해 패턴의 길이를 문장단위까지 늘이기 때문에, 패턴의 수가 급증하는 문제점을 가진다. 본 논문에서는 패턴의 단위를 구단위로 한정시킬 때 발생하는 애매성을 해소하는 방법으로 시소러스를 기반으로 한 두단계 대역어 선택 방식을 제안함으로써 효과적으로 애매성을 감소시키면서 패턴의 길이를 줄이는 모델을 제시한다. 두단계 대역어 선택 방식은 원시언어의 한 패턴에 대해 여러 가능한 목적언어의 대역패턴들이 있을 때, 첫 번째 단계에서는 원시언어 내에서의 제약조건에 맞는 몇가지 대역패턴들을 선택하고, 두번째 단계에서는 목적언어 내에서의 제약조건에 가장 적합한 하나의 대역패턴을 선택하는 방식이다. 또한 본 논문에서는 이와 같은 모델에서 패턴의 수가 코퍼스의 증가에 따른 수렴가능성을 논한다.
Kim, Jung-In;Moon, Kyong-Hi;Lee, Jong-Hyeok;Lee, Geun-Bae
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.261-268
/
1997
일본어에서 조동사 "-reru, -rareru"는 '피동', '가능', '자발', '존경' 등의 의미로 두루 쓰이고 있다. 일한 번역에서 이들은 여러 가지 대역어로 나타나며 일정한 규칙이나 패턴을 취하지 않으므로, 기계 번역시 조동사 "-reru, -rareru"는 그 처리가 쉽지 않다. 더구나, 조동사 "-reru, -rareru"는 일본어에서 높은 빈도로 등장하여 무시하기 어렵고 의미별 분포가 고루 퍼져 있어, 대표적 대역어인 "-아/어/여 지다. -되다" 등으로만 대응시킬 경우의 번역 에러는 의외로 치명적이다. 따라서, "-reru, -rareru"의 번역을 고려한 특수 처리를 행할 필요가 있다. 먼저, 본 논문에서는 조동사 "-reru, -rareru"가 포함된 아사히 신문 가사의 5,800여 문장을 대상으로 각각의 의미에 대한 분포 및 한국어 대역어의 빈도를 조사하였다. 대역어는 크게 8종류의 형태로 나누었으며 각 동사별로 "-reru, -rareru"와 결합된 경우의 의미 출현 빈도를 참고하여 대응 가능한 대역어 형태들을 미리 결정하였다. 그리고, 대역어가 여러 개 존재하는 경우는 패턴 매칭을 통하여 적절한 대역어를 선택할 수 있도록 하였다. 그 결과, 약 87%의 "-reru, -rareru"가 적절한 대역어로 번역되어, 본 논문에서 제시한 의미 출현 빈도에 기반한 각 동사별 대역어 형태 결정 방법이 "-reru, -rareru"의 다의성 해소에 유효하다고 판단된다.
Journal of Korea Society of Industrial Information Systems
/
v.5
no.2
/
pp.56-61
/
2000
The quality of English to Korean Machine Translation depends on how well it deals with target word selection of verbs containing enormous ambiguity. Verb sense disambiguation can be done by using collocation, but the construction of verb collocations costs a lot of efforts and expenses. So, existing methods should be examined in the practical view points. This paper describes the practical method of target word selection using existing collocation and semantic distance computed from minimum semantic features of nouns.
Annual Conference on Human and Language Technology
/
2001.10d
/
pp.310-316
/
2001
이 논문은 '에서', '으로'와 같은 한국어의 부사격 조사들을 다국어 기계번역 시스템에서 다룰 때 올바른 역어 선택을 위한 3단계 변환 방식과 이를 위한 부사격 조사의 언어학적 모델링 방법을 제시한다. 3단계 변환 방식은 부사격 조사의 의미 모호성 해소, 의사 중간언어표상 (Quasi-Interlingua Representation)으로의 변환, 전치사 선택의 3단계로 구성되어 있다. 본 논문에서 중점적으로 다루게 될 세번째 단계, 즉 영어나 독일어에서 한국어의 부사격 조사에 대한 전치사 선택의 단계에서 올바른 대역어 선정 방법론의 핵심이 되는 부사격 조사에 대한 언어학적 모델링을 위해 Pustejovsky (1995)의 생성 어휘부 이론 (Generative Lexicon Theory)을 도입한다. 이 논문에서 제시한 방법론은 그 타당성의 수학적 검증을 위해 통합기반 기계번역 시스템인 CAT2에서 구현되었으나, 방법론 자체는 특정 시스템에 제한됨 없이 범용적으로 적용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.