• Title/Summary/Keyword: 대역어

Search Result 103, Processing Time 0.024 seconds

The Composition of Korean-English Transfer Dictionary for Proper Selection of Verb Translation (적절한 동사 대역어 선택을 위한 한영 변환 사전 구성)

  • Song, Jung-Keun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.294-301
    • /
    • 2001
  • 기계번역이 인간의 언어 능력을 기계로 구현한다는 점에서 전산학적 성격이 강하다면, 변환 사전은 인간의 어휘부(lexicon) 정보를 그대로 기계에 표상한다는 점에서 언어학적 성격이 강하다. 여기서는 다양한 어휘부 정보 중에서 한영 기계번역에서 필요한 언어학적 정보를 추출하고 이러한 정보를 바탕으로 적절한 동사 대역어 선택을 위한 변환 사전의 모형을 만들어 보고자 하였다. 한영 기계번역에서 적절한 동사 대역어 선택의 어려움은 한국어 동형어 처리 문제와 한국어에서는 포착되지 않지만 영어로 번역하는 과정에서 발생하는 영어 표현의 특수성 때문에 기인한 것으로 볼 수 있다. 이 논문에서는 이러한 문제를 논항과 문법 형태소, 선택제약, 개별 어휘 등의 기초적인 언어학적 개념을 이용한 변환사전을 통해 해결한다. 또한 동사 대역어 선택에 영향을 미치는 이러한 개별적인 요인들은 실제 변환사전의 기술에 있어서는 복합적으로 적용됨을 동사 '먹다'의 기술을 통해 확인할 수 있다.

  • PDF

Korean-Japanese Cross Lingual Information Retrieval Based on Bi-gram Indexing (바이그램 색인에 기반한 한-일 교차언어검색)

  • Lee Gyu-Chan;Kang In-Su;Na Seung-Hoon;Lee Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.448-450
    • /
    • 2005
  • 교차언어검색 시스템은 다양한 언어자원을 필요로 한다. 여기서는 한-일 대역어 사전과 일본어 문서의 바이그램 색인만을 이용해서 교차언어검색을 수행하는 방법을 제시한다. 한국어로 된 자연어 질의에서 형태소분석기 등의 도움 없이 간단하게 일본어 대역어 리스트를 생성할 수 있는 방법과, 검색의 성능을 올릴 수 있도록 대역어에 가중치를 부여하는 방법을 제안한다. 그리고 실험을 통해 제시한 방법을 평가하고 분석한다.

  • PDF

Target Word Selection for English-Korean Machine Translation System using Multiple Knowledge (다양한 지식을 사용한 영한 기계번역에서의 대역어 선택)

  • Lee, Ki-Young;Kim, Han-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.75-86
    • /
    • 2006
  • Target word selection is one of the most important and difficult tasks in English-Korean Machine Translation. It effects on the translation accuracy of machine translation systems. In this paper, we present a new approach to select Korean target word for an English noun with translation ambiguities using multiple knowledge such as verb frame patterns, sense vectors based on collocations, statistical Korean local context information and co-occurring POS information. Verb frame patterns constructed with dictionary and corpus play an important role in resolving the sparseness problem of collocation data. Sense vectors are a set of collocation data when an English word having target selection ambiguities is to be translated to specific Korean target word. Statistical Korean local context Information is an N-gram information generated using Korean corpus. The co-occurring POS information is a statistically significant POS clue which appears with ambiguous word. The experiment showed promising results for diverse sentences from web documents.

  • PDF

Word Sense Disambiguation in Query Translation of CLTR (교차 언어 문서 검색에서 질의어의 중의성 해소 방법)

  • Kang, In-Su;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.52-58
    • /
    • 1997
  • 정보 검색에서는 질의문과 문서를 동일한 표현으로 변환시켜 관련성을 비교하게 된다. 특히 질의문과 문서의 언어가 서로 다른 교차 언어 문서 검색 (CLTR : Cross-Language Text Retrieval) 에서 이러한 변환 과정은 언어 변환을 수반하게 된다. 교차 언어 문서 검색의 기존 연구에는 사전, 말뭉치, 기계 번역 등을 이용한 방법들이 있다. 일반적으로 언어간 변환에는 필연적으로 의미의 중의성이 발생되며 사전에 기반한 기존 연구에서는 다의어의 중의성 의미해소를 고려치 않고 있다. 본 연구에서는 질의어의 언어 변환시 한-일 대역어 사전 및 카도가와 시소러스 (각천(角川) 시소러스) 에 기반한 질의어 중의성 해소 방법과 공기하는 대역어를 갖는 문서에 가중치를 부여하는 방법을 제안한다. 제안된 방법들은 일본어 특허 문서를 대상으로 실험하였으며 5 %의 정확도 향상을 얻을 수 있었다.

  • PDF

Extracting English-Korean Named-Entity Word-pairs using Wikipedia (위키피디아를 이용한 영-한 개체명 대역어 쌍 구축)

  • Kim, Eun-Kyung;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.101-105
    • /
    • 2009
  • 본 논문은 공통적으로 이용할 수 있는 웹 환경에서의 한국어 정보로 획득할 수 있는 정보의 양이 영어권 정보의 양보다 상대적으로 적다는 것을 토대로, 웹정보 이용의 불균형을 해소하고자 하는 목적으로부터 출발하였다. 최근에는 지식 정보의 세계화, 국제화에 따라 동일한 정보를 각국 언어로 제공하고자하는 연구가 꾸준히 증가하고 있다. 온라인 백과사전인 위키피디아 역시 현재 다국어로 제공이 되고 있지만 한국어로 작성된 문서는 영어로 작성된 문서의 5% 미만인 것으로 조사되었다. 본 논문에서는 위키피디아 내에서 제공하는 다국어간의 링크 정보와 인포박스 데이터를 활용하여 위키피디아 문서 내에서 개체명을 인식하고, 자동으로 개체명의 영-한 대역어 쌍을 추출하는 것을 목표로 한다. 개체명은 일반 사전에 등재 되지 않은 경우가 많기 때문에, 기계번역에서 사전 데이터 등을 활용하여 개체명을 처리하는 것은 쉽지 않으며 일반적으로 음차표기 방식을 함께 사용하여 해결하고 있다. 본 논문을 통해 위키피디아 데이터를 활용해 만들어진 영-한 개체명 대역어 사전을 구축하기 위해 사용된 기술은 추후 위키피디아 문서를 기계번역하는데 있어 동일한 방법으로 사용이 가능하며, 구축된 사전 데이터는 추후 영-한 자동 음차표기 연구의 사전 데이터로도 활용이 가능하다.

  • PDF

Extraction of English-Korean Compound Noun Translation through Automatic Alignment Method (자동 정렬을 통한 영한 복합어의 역어 추출)

  • Lee, Ju-Ho;Choi, Key-Sun;Lee, Jae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.309-314
    • /
    • 2000
  • 본 논문에서는 양국어로 된 병렬 코퍼스로부터 복합어의 역어를 추출하기 위한 정렬 방법을 제시한다. 여기에서는 개념어에 대한 양국어 공기정보를 사용하여 기본 정렬을 하고, 인접한 개념어로 정렬의 단위를 확장했다. 또한 재추정 기법을 사용하여 대역 확률을 계산함으로써 보다 높은 정확률을 얻을 수 있었다. 본 논문에서 제안한 방법을 적용하여 139,265개의 영어 어절로 이루어진 우루과이 라운드 영한 병렬 코퍼스에 대해서 실험한 결과 2,290개의 대역어 쌍을 얻었고, 그 정확률은 74%였다.

  • PDF

Constructing A Korean-English Bilingual Dictionary For Well-formed English Sentence Generations In A Glossary-based System (Glossary에 기초한 시스템에서의 적형태 영어문장 생성을 위한 한영 대역에 전자사전구축)

  • 신효필
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.2
    • /
    • pp.1-13
    • /
    • 2003
  • We introduce a way to generate morphologically and syntactically well-formed English sentences when building Korean to English bilingual dictionary for Machine Translation Systems. It has been proved that basic inflectional or structural descriptions for English sentences are by no means enough to generate proper English sentences because of traditional dictionary structures. Furthermore, much research has been focused only on how to disambiguate semantic ambiguities of words in a bilingual dictionary To take advantage of existing paperback Korean to English bilingual dictionary, its automatic conversion to an electronic version and methodologies to assign proper features to the descriptions for well-formed English sentences with minimum human effort have been proposed on the basis of the dictionary-specific structures. This approach was originally motivated for a glossary-based machine translation system, but it can be also applied to large scale dictionary work.

  • PDF

Automatically Extracting Unknown Translations Using Phrase Alignment (정렬기법을 이용한 미등록 대역어의 자동 추출)

  • Kim, Jae-Hoon;Yang, Sung-Il
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.231-240
    • /
    • 2007
  • In this paper, we propose an automatic extraction model for unknown translations and implement an unknown translation extraction system using the proposed model. The proposed model as a phrase-alignment model is incorporated with three models: a phrase-boundary model, a language model, and a translation model. Using the proposed model we implement the system for extracting unknown translations, which consists of three parts: construction of parallel corpora, alignment of Korean and English words, extraction of unknown translations. To evaluate the performance of the proposed system we have established the reference corpus for extracting unknown translation, which comprises of 2,220 parallel sentences including about 1,500 unknown translations. Through several experiments, we have observed that the proposed model is very useful for extracting unknown translations. In the future, researches on objective evaluation and establishment of parallel corpora with good quality should be performed and studies on improving the performance of unknown translation extraction should be kept up.

Extraction of English-Korean Compound Noun Translation through Automatic Alignment Method (자동 정렬을 통한 영한 복합어의 역어 추출)

  • 이주호;최기선;이재성
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.309-314
    • /
    • 2000
  • 본 논문에서는 양국어로 된 병렬 코퍼스로부터 복합어의 역어를 추출하기 위한 정렬 방법을 제시한다. 여기에서는 개념어에 대한 양국어 공기정보를 사용하여 기본 정렬을 하고, 인접한 개념어로 정렬의 단위를 확장했다. 또한 재추정 기법을 사용하여 대역 확률을 계산함으로써 보다 높은 정확률을 얻을 수 있었다. 본 논문에서 제안한 방법을 적용하여 139,265개의 영어 어절로 이루어진 우루과이 라운드 영한 병렬 코퍼스에 대해서 실험한 결과 2,290개의 대역어쌍을 얻었고, 그 정확률은 74%였다.

  • PDF

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.