• Title/Summary/Keyword: 대수 응력특이성

Search Result 3, Processing Time 0.021 seconds

열하중을 받는 이종재 V-노치 균열의 응력강도계수 해석

  • 문창호;조상봉;김진광;노홍래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.240-240
    • /
    • 2003
  • V-노치 균열에서 열하중이 작용하는 경우는 비제차형 경계조건의 문제가 되고, 이 조건에 대한 방정식의 일반해를 구하기 위해서 재차형 연립방정식에 대한 일반해(Homogeneous solution)와 비제차형 연립방정식에 대한 특수해(Particular solution)의 두 가지 해를 구할 수 있다. 이들 해는 V-노치 균열에 대한 고유치가 되고 이 고유치가 중복근을 가지게 되는 경우에는 로그항(1n[r])이 나타나게 되고 이 항에 의해서 응력을 무한대로 발산시키므로 이를 대수응력특이성이라 한다. 열하중이 작용할 때 대수응력특이성을 나타내는 로그항의 계수가 영(0)이 되어 대수응력특이성이 사라지게 되므로 V-노치 선단에서의 응력특이성은 고유치와 그에 대한 고유벡터에 의해 결정된다. 본 논문에서는 비정상상태 열하중이 가해지는 등방성 이종재료 내의 V-노치 균열문제에서 패기 각도와 이종재료의 기계적 성질에 의해 결정되는 응력특이성지수를 구하고 이에 대한 응력강도계수를 유한요소해석 프로그램인 ANSYS와 상반일 경로 적분법(RWCIM)을 이용하여 구하였다.

  • PDF

A Study on Logarithmic Stress Singularities for V-notched Cracks in Isotropic Dissimilar Materials (등방성 이종재료 내의 V-노치 균열에 대한 대수 응력특이성에 관한 연구)

  • 김우진;김진광;조상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.747-750
    • /
    • 1997
  • Using complex potentials and the concept of repeated roots for general solutions, logarithmic stress singularities and coefficient vectors for v-notched cracks in isotropic dissimilar materials are evaluated and demonstrated to have no influence on the logarithmic stress singularities.

  • PDF

A Study on Logarithmic Stress Singularities and Coefficient Vectors for V-notched Cracks in Dissimilar Materials (이종재 V-노치 균열의 대수응력특이성과 계수벡터에 관한 연구)

  • 조상봉;김우진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.159-165
    • /
    • 2003
  • Most engineers interested in stress singularities have focused mainly on the research of power stress singularities for v-notched cracks in dissimilar materials. The logarithmic stress singularity was discussed a little in Bogy's paper. The power-logarithmic stress singularity was reported by Dempsey and Sinclair. It was indicated that the logarithmic singularity is only a special case of power-logarithmic stress singularities. Then, Dempsey reported specific cases which have power-logarithmic singularities even fur homogeneous boundary conditions. It was known that logarithmic stress singularities for v-notched cracks in dissimilar materials occurs when the surfaces of a v-notched crack have constant tractions. In this paper, using the complex potential method, the stresses and displacements having logarithmic stress singularities were obtained and the coefficients vectors were calculated by a numerical program code: Mathematica. It was shown that our analysis models don't have logarithmic stress singularities under the constant tractions, although the coefficient vectors are existing.