• Title/Summary/Keyword: 대수평균엔탈피차

Search Result 4, Processing Time 0.02 seconds

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF

Performance Analysis of Indoor GHP for R410A Application (R410A 냉매를 이용한 GHP용 고효율 실내기 성능특성)

  • Lee, Jong-Ho;Park, Chang-Sug;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.447-452
    • /
    • 2009
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchanger with R410A. This study carried out experimental and numerical analysis for indoor heat exchangers. In the experimental study, capacity of the indoor unit was estimated 8.3 kWh with the valve opening rate of 95% for the 50% partial operation condition. The air temperatures were measured using 80 thermocouples. This study also compared experimental data with the calculated data for the outlet temperature and the tube length. It is found that the relative errors between the experiment data and the calculated result are 4.2% and 0.5% for the outlet temperature and the tube length, respectively.

  • PDF

Design of an Indoor Heat Exchanger that Apply Refrigerant R410A (냉매 R410A를 적용한 실내 열교환기 설계)

  • Kim, Beom-Chan;Park, Chang-Sug;Cha, Woo-Ho;Kim, Sung-Soo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.317-322
    • /
    • 2008
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchanger with R410A for Gas Engine Driven Heat Pump (GHP) application and to find optimum design conditions of indoor heat exchanger by parametric analysis for the key parameters. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant of R410A. The results show that fin pitch and longitudinal pitch have significant effect on the heat exchanger preformance. This study will provide the guideline for optimum design of indoor heat exchanger with R410A for GHP application.

  • PDF

A Computer Simulation for Performance Prediction of Fin-Tube Heat Exchanger under Frosting Conditions (착상조건 하에서 핀-관 열교환기의 성능예측을 위한 컴퓨터 시뮬레이션)

  • Lee, K.S.;Pak, H.Y.;Lee, W.Y.;Lee, T.H.;Lee, S.Y.;Lee, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.161-170
    • /
    • 1995
  • This study is concerned with the numerical analysis of performance on fin-tube heat exchanger under frosting condition. In this work, tube-by-tube method using LMED is employed. The present results are compared with O'Neal's experimental and numerical results. A standard evaporator model with 2rows-2columns is selected to investigate the effects of the various parameters such as fin pitch, air flow velocity, and humidity. The results show that frost thickness and the amount of frost per unit area decrease as fin-pitch becomes narrower. In the meantime, frost thickness and accumulation rate increase with higher inlet air humidity. It is shown that heat transfer rate increases during 30minutes and then it decreases. Heat transfer rate and the amount of frost increase with air velocity, however frost thickness does not increase over a certain velocity.

  • PDF