• Title/Summary/Keyword: 대수층 축열

Search Result 15, Processing Time 0.021 seconds

A study of the simulation of thermal distribution in an aquifer thermal energy storage utilization model (대수층 축열 에너지 활용 모델의 온도 분포 시뮬레이션 연구)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.697-700
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop an ATES system which has certain hydrogeological characteristics, understanding of the thermo hydraulic processes of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermo hydraulic transfer for heat storage is simulated using FEFLOW according to two sets of pumping and waste water reinjection scenarios of heat pump operation in a two layered confined aquifer. In the first set of model, the movement of the thermal front and groundwater level are simulated by changing the locations of injection and pumping well in seasonal cycle. However, in the second set of model the simulation is performed in the state of fixing the locations of pumping and injection well. After 365 days simulation period, the temperature distribution is dominated by injected water temperature and the distance from injection well. The small temperature change is appears on the surface compared to other slices of depth because the first layer has very low porosity and the transfer of thermal energy are sensitive at the porosity of each layer. The groundwater levels and temperature changes in injection and pumping wells are monitored to validate the effectiveness of the used heat pump operation method and the thermal interference between wells is analyzed.

  • PDF

The Influences of Aquifer Thermal Energy Storage (ATES) System on Geochemical Properties of Groundwater (대수층 계간 축열시스템 적용을 위한 지하수의 화학적 특성 변화)

  • Choi, Hanna;Lee, Hong-Jin;Shim, Byoung Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.14-24
    • /
    • 2021
  • Aquifer thermal energy storage (ATES) system uses groundwater thermal energy for cooling and heating of buildings, and it is also often utilized to provide warm water to crops and plants for the purpose of enhancing agricultural yields. This study investigated the potential influences of a ATES system on the geochemical properties of groundwater by simulating the variation of hydrochemistry and saturation index of groundwater during ATES operation. The test bed was installed at an agricultural field, which is mainly composed of an groundwater-rich alluvial plain. The simulation results showed no significant precipitation of mineral phases such as manganese-iron oxide, carbonate and sulfate around the ATES test bed, as well as no debasement of other important water quality parameters. The implementation of ATES system in the study area was appropriate and effective for utilizing the thermal energy of groundwater for agricultural use.

Simulation of thermal distribution with the effect of groundwater flow in an aquifer thermal energy storage (ATES) system model (대수층 축열 에너지(ATES) 시스템 모델에서 지하수 유동 영향에 의한 지반내 온도 분포 예측 시뮬레이션)

  • Shim, Byoung-Ohan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having the effect of groundwater movement, understanding of thermohydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated by using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.001 are shaped circular, and the center is moved less than 5 m to the direction of groundwater flow in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of east boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Economic Evaluation of ATES Heat Pump System (ATES 열펌프 시스템의 경제성 평가)

  • Kim, Namtae;Choi, Jong Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.199-199
    • /
    • 2011
  • ATES(Aquifer Thermal Energy Storage) 열펌프 시스템은 기존의 다양한 열원 적용 시스템 대비 효율이 우수한 것으로 알려져 유럽과 미국에서 건물 냉난방 시스템으로 적용되고 있다. 특히, ATES 시스템은 기존의 냉난방 시스템 대비 경제성이 우수한 것으로 알려져 있으나 국내에서는 이에 대한 연구 결과는 전무한 실정이다. 본 연구에서는 ATES 열펌프 시스템의 실증 성능 결과를 분석하였으며, LNG 보일러와 에어컨을 사용하는 기존의 냉난방 시스템을 비교시스템으로 ATES 열펌프 시스템의 경제성 평가를 수행하였다. ATES 시스템의 연간 실증 성능 실험결과 ATES 시스템은 외기온도와 무관하게 연중 안정적인 성능을 나타내었다. 경제성 평가시에 생애주기법(Life Cycle Cost)을 적용하여 ATES 열펌프 시스템의 설치 및 운전에 필요한 총 소요비용을 산정하고, 이 결과를 바탕으로 투자회수기간법을 통해 ATES 시스템의 투자회수 기간을 산정하였다. 생애주기법 적용 시에 현재가치법을 사용하였으며, 현재가치법은 수명주기에 발생하는 모든 투자비용과 절감액을 일정한 시점을 기준으로 등가환산하는 방법을 의미한다. 현재가치법에 사용되는 현재가치는 초기비용과 현재가치계수의 곱으로 나타나는데, 여기에서 현재가치계수는 임의의 이자율로 일정기간 동안 정기적인 할부금액이 적립될 때의 현재금액을 구하기 위해 사용하는 계수를 의미한다. 전기와 LNG는 각각 2009년 7월의 (주)한국전력공사와 (주)한국가스공사의 고시요금을 적용하였다. 본 시스템은 실증 설비용량인 20RT를 대상 건물로 가정하였고, 초기투자비는 크게 공사비와 냉난방 설비 구입비로 구성되어 있으며, 기본적인 물가지표는 (사)한국물가정보(KPI)의 고시 데이터를 참조하였다. 각 시스템의 초기투자비는 ATES 시스템이 비교대상 기존 냉난방 시스템 대비 5.7배 높게 나타났다. 일일 8시간 사용기준으로 계절별 전력요금을 고려한 연간운전 비용은 ATES 시스템이 기존 시스템 대비 냉난방 시에 각각 77%와 16%를 나타내어 운전비용이 연간 절감되었고, 난방 운전 시 절감 비율이 냉방시보다 크게 나타났다. 두 시스템에 대한 생애주기비용을 산정하기 위하여 에어컨과 보일러의 기존시스템과 ATES 시스템의 가용연수를 모두 20년으로 설정하였고, 유지보수 비용은 초기투자비용의 2%로 설정하고, 할인율은 은행 예금이자를 기준으로 5%로 설정하였다. 전기와 LNG의 요금 상승률은 (사)한국물가정보를 바탕으로 각각 2%와 8%로 가정하였다. 이러한 조건에서 생애주기법을 이용한 경제성평가는 ATES 시스템의 경우 생애운전비용이 초기투자비용보다 작게 나타났으며, 기존 냉난방 시스템은 생애운전비용이 초기투자비용에 비하여 높게 나타났다. 본 연구 대상 ATES 열펌프 시스템의 실증 성능 데이터와 기존 문헌으로부터 얻은 냉난방 시스템의 성능 결과를 이용하여 생애주기 비용을 적용한 결과 ATES 시스템의 기존 시스템 대비 투자회수 기간은 6.62년으로 나타났다. 특히, 본 연구에서는 ATES 시스템이 국내 최초로 적용됨에 따라 스크린 등의 부품을 다소 고가의 제품으로 시스템에 적용하였으므로 ATES 시스템의 신뢰성과 안정성이 확보되면 초기 투자비 감소가 가능할 것으로 예상되며, 기존 시스템 대비 투자회수 기간은 더욱 감소될 수 있을 것으로 예상된다.

  • PDF

Effects of the Cooling and Heating System with Seasonal Thermal Storage in Alluvial Aquifer on Greenhouse Heating (충적대수층 계간축열 냉난방 시스템의 온실 난방 효과)

  • Moon, Jong Pil;Kang, Geum Choon;Kim, Hyung Gweon;Lee, Tae Seok;Oh, Sung Sik;Jin, Byung Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.127-135
    • /
    • 2017
  • In this study, a cold well and a warm one with the distance of 100 m were installed in the alluvial aquifer. Groundwater used as the heat and the cold source of heat pump was designed to flow into the warm and the cold well with a diameter of 200 mm. In order to increase the heat and cold storage in aquifer, six auxiliary wells with the diameter of 50 mm and the depth of 30 m were installed at an interval of 5 m from the main well. Also, heat pump 50 RT, the thermal tank $40m^3$, and a remote control and monitoring system were installed in three single-span greenhouses ($2,100m^2$) for growing tomato in Buyeo, Chungcheongnam-do. According to the aquifer heat storage test which had been conducted from Aug. 31 to Sep. 22, 2016, warm water of $850m^3$ was found to flow into warm well. The temperature of the injected water was $30^{\circ}C$ (intake temperature : $15^{\circ}C$), and the heat of 12.8 Gcal was stored. The greenhouse heating test in winter had been conducted from Nov. 21, 2016 to Apr. 30, 2017. On Nov. 21, 2016 when heating greenhouse started, the aquifer temperature of the warm well was $18.5^{\circ}C$. The COP for heating with water source at $18.5^{\circ}C$ was 3.8. The intake water temperature of warm well was gradually lowered to the temperature of $15^{\circ}C$ on Jan. 2, 2017 and the heat pump COP was measured to be 3.2 at that time. As a result, the heat pump COP was improved by 18 %. and retrieval heat was 8 Gcal, the retrieval rate of heat stored in aquifer was estimated at 63 %.