• Title/Summary/Keyword: 대설지역

Search Result 65, Processing Time 0.021 seconds

Synoptic Environment Associated with Extreme Heavy Snowfall Events in the Yeongdong Region (영동 지역의 극한 대설 사례와 관련된 종관 환경)

  • Kwon, Tae-Yong;Cho, Young-Jun;Seo, Dong-Hee;Choi, Man-Gyu;Han, Sang-Ok
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.343-364
    • /
    • 2014
  • This study presents local and synoptic conditions associated with extreme heavy snowfall events in the Yeongdong region, as well as the temporal and spatial variability of these conditions. During the last 12 years (2001~2012), 3 extreme snowfall events occurred in the Yeongdong region, which recorded daily snowfall greater than 50 cm, respectively. In these events, one of the noticeable features is the occurrence of heavy hourly snowfall greater than 10 cm. It was reported from satellite analysis that these heavy snowfall may be closely related to mesoscale convective clouds. In this paper the 3 extreme events are examined on their synoptic environments associated with the developments of mesoscale convective system using numerical model output. These 3 events all occurred in strongly forced synoptic environments where 500 and 300 hPa troughs and 500 hPa thermal troughs were evident. From the analysis of diagnostic variables, it was found in all 3 events that absolute vorticity and cold air advection were dominant in the Yeongdong region and its surrounding sea at upper levels, especially at around 500 hPa (absolute vorticity: $20{\sim}60{\times}10^{-5}s^{-1}$, cold air advection: $-10{\sim}-20^{\circ}C$ $12hr^{-1}$). Moreover, the spatial distributions of cold advection showed mostly the shape of a narrow band along the eastern coast of Korea. These features of absolute vorticity and cold advection at 500 hPa were sustained for about 10 hours before the occurrence of maximum hourly snowfall.

An Analysis of Low-level Stability in the Heavy Snowfall Event Observed in the Yeongdong Region (영동지역 대설 사례의 대기 하층 안정도 분석)

  • Lee, Jin-Hwa;Eun, Seung-Hee;Kim, Byung-Gon;Han, Sang-Ok
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.209-219
    • /
    • 2012
  • Extreme heavy snowfall episodes have been investigated in case of accumulated snowfall amount larger than 50 cm during the past ten years, in order to understand the association of low-level stability with heavy snowfall in the Yeongdong region. In general, the selected 4 events have similar synoptic setting such as the Siberian High extended to East Sea along with the Low passing by the southern Korean Peninsula, eventually inducing easterly in the Yeongdong region. Specifically moist-adiabatically neutral layer has been observed during the heavy snowfall period, which was easily identified using vertical profiles of equivalent potential temperature observed at Sokcho, whereas convective unstable layer has been formed over the East sea due to relatively warm sea surface temperature (SST) about $8{\sim}10^{\circ}C$ and lower temperature around 1~2 km above the surface, obtained from RDAPS. Difference of equivalent potential temperature between 850 hPa and surface as well as difference between air and sea temperatures altogether gradually increased before the snowfall period. Instability-induced moisture supply to the atmosphere from the East sea, being cooled and saturated by the upper cold surge, would make low-level ice cloud, and eventually move inland by the easterly flow. Heavy snowfall will be enhanced in association with low-level convergence by surface friction and upslope wind against Taebaek mountains. This study emphasizes the importance of low level stability in the Yeongdong region using the radiosonde sounding and RDAPS data, which should quantitatively be examined through numerical model as well as heat and moisture supply from the ocean.

A Numerical Simulation Study Using WRF of a Heavy Snowfall Event in the Yeongdong Coastal Area in Relation to the Northeasterly (북동 기류와 관련된 영동해안 지역의 대설 사례에 대한 WRF수치모의 연구)

  • Lee, Jae Gyoo;Kim, Yu Jin
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.339-354
    • /
    • 2008
  • A numerical simulation of a heavy snowfall event that occurred 13 January 2008 along the Yeongdong coastal area, was performed using WRF (Weather Research and Forecasting) in order to reveal mesoscale structures and to construct a conceptual model showing the meteorological background that caused the large difference in snowfall amounts between the Yeongdong mountain area and the Yeongdong coastal area. The simulation results matched well with various observations such as corresponding 12h-accumulated observed precipitation, surface wind obscrvation, radar echoes, and satellite infrared images. The simulation and the observations showed that the scale of the event was of meso - $\beta$ and meso - $\gamma$ scale. The simulation represented well the mesoscale process causing the large difference in snowfall amounts in the two areas. First, wind flow was kept, to a certain extent, from crossing the mountains due to the blocking effect of the low Froude number (~1). The northeast flow over the adjaccnt sea tumcd northwest as it approachcd the mountains, where it was trapped, allowing so-called cold air damming. Second, a strong convergence area formed where the cold northwest flow along the Yeongdong coastal area and the relatively warm and moist northeast flow advecting toward the coast met, supporting the fonllation of a coastal front. Thus, the vertical motion was strongest over the front located near the coast, leading to the heavy snowfall there rather than in the remote mountain area.

A Case Study of Heavy Snowfall with Thunder and Lightning in Youngdong Area (뇌전을 동반한 영동지역 대설 사례연구)

  • Kim, Hae-Min;Jung, Sueng-Pill;In, So-Ra;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.187-200
    • /
    • 2018
  • The heavy snowfall phenomenon with thunder and lightning occurred in Yeongdong coastal region on 20 January 2017. Amount of snow on that day was a maximum of 47 cm and was concentrated in a short time (2 hours) at the Yeongdong coastal area. The mechanism of thundersnow was investigated to describe in detail using observational data and numerical simulation (Weather Research and Forecast, WRF) applied lightning option. The results show that a convective cloud occurred at the Yeongdong coastal area. The east wind flow was generated and the pressure gradient force was maximized by the rapidly developed cyclone. The cold and dry air in the upper atmosphere has descended (so called tropopause folding) atmospheric lower layer at precipitation peak time (1200 LST). In addition, latent heat in the lower atmosphere layer and warm sea surface temperature caused thermal instability. The convective cloud caused by the strong thermal instability was developed up to 6 km at that time. And the backdoor cold front was determined by the change characteristics of meteorological elements and shear line in the east sea. Instability indexes such as Total totals Index (TT) and Lightning Potential Index (LPI) are also confirmed as one of good predictability indicates for the explosive precipitation of convective rainfall.

Development of a DEbris flow Loss Estimation Tool using Inventory and GIS (토석류 충격력과 인벤토리를 고려한 GIS 기반 토사재해 피해액 산정 모형 개발)

  • Kim, Byung Sik;Nam, Dong Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.105-105
    • /
    • 2020
  • 전 세계적으로 기후변화에 따른 기온상승 및 강수량 증가, 호우일수 증가 등 이상기후로 인해 다양한 형태의 자연재해가 발생하고 있으며, 이로 인해 우리나라에서도 폭우, 풍랑, 가뭄, 대설 등으로 인한 자연재해 발생이 증가하고 있다. 특히 우리나라는 연평균 강수량 1,300mm의 대부분의 강우가 하절기인 6 ~ 9월에 태풍 및 집중호우를 동반하여 발생하기 때문에 연강수량의 60%이상이 여름철에 집중된다. 이러한 여름철에 집중된 강우로 인해 홍수 및 범람 피해가 여름철에 급증하고 있으며, 2차 피해인 산사태 및 토석류 피해 또한 급증하고 있는 추세이다. 토석류는 집중호우 시 자연산지의 취약한 사면이 붕괴되어 유출수와 함께 급경사의 계류로 붕괴된 토석이 유출되면서 토석류로 전이 및 발전하여 계류하부의 주택 및 농경지를 매몰하여 피해를 발생시킨다. 특히 토석류는 유출수와 함께 토석이 급경사의 계류를 따라 빠른 속도로 이동하고 퇴적 시작점에서 높이의 6배까지 이동하여 인명피해 등 큰 피해를 발생시키는 특성이 있다. 이러한 토석류 피해로 인한 피해와 손실을 최소화하기 위해서는 토석류 발생 시 피해 규모를 예측하여야하며, 또한 하부 구조물의 손실을 정량적으로 해석하여 방재정책의 우선순위를 수립하여야 한다. 따라서 본 논문에서는 강우로 인한 토석류 발생시 하부 구조물의 손실을 정량적으로 해석하기 위하여 토사재해 손실·손상함수를 개발하여, 함수를 탑재한 토사재해 피해액 산정모형인 DELET(DEbris flow Loss Estimation Tool) 모형을 개발하였다. DELET를 이용하여 실제 토석류 피해가 발생한 피해지역에 적용하여 토사재해 피해 구조물의 손실을 평가하였다.

  • PDF