• 제목/요약/키워드: 대류 및 음향 성분

검색결과 3건 처리시간 0.019초

자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group (Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - 현대자동차 BMT4 (Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case Hyundai BMT4)

  • ;;;임종윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.563-564
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses several simulation methods that can be used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied in the framework of a benchmark proposed by Hyundai Motors Corporation.

  • PDF

파수-주파수 분석을 이용한 자동차 옆 창문 표면 압력 섭동의 비압축성/압축성 성분 분해 (Decomposition of Surface Pressure Fluctuations on Vehicle Side Window into Incompressible/compressible Ones Using Wavenumber-frequency Analysis)

  • 이송준;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.765-773
    • /
    • 2016
  • The vehicle interior noise caused by exterior fluid flow field is one of critical issues for product developers in a design stage. Especially, turbulence and vortex flow around A-pillar and side mirror affect vehicle interior noise through a side window. The reliable numerical prediction of the noise in a vehicle cabin due to exterior flow requires distinguishing between the aerodynamic (incompressible) and the acoustic (compressible) surface pressures as well as accurate computation of surface pressure due to this flow, since the transmission characteristics of incompressible and compressible pressure waves are quite different from each other. In this paper, effective signal processing technique is proposed to separate them. First, the exterior flow field is computed by applying computational aeroacoustics techniques based on the Lattice Boltzmann method. Then, the wavenumber-frequency analysis is performed for the time-space pressure signals in order to characterize pressure fluctuations on the surface of a vehicle side window. The wavenumber-frequency diagrams of the power spectral density shows clearly two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface pressure fluctuations. Lastly, decomposition of surface pressure fluctuation into incompressible and compressible ones is successfully accomplished by taking the inverse Fourier transform on the wavenumber-frequency diagrams.