• Title/Summary/Keyword: 대두 이소플라본

Search Result 72, Processing Time 0.023 seconds

Protective Effect of Isoflavone, Genistein from Soybean on Singlet Oxygen Induced Photohemolysis of Human Erythrocytes ($^1O_2$으로 유도된 사람 적혈구의 광용혈에 있어서 대두의 아이소플라본인 제니스테인의 보호작용)

  • Park, Soo-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.510-518
    • /
    • 2003
  • Protective effects of natural components including genistein (4',5,7-trihydroxyisoflavone) from Glycine max MERRILL on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. Genistein $(10{\sim}100\;{\mu}m)$ suppressed photohemolysis in a concentration-dependent manner, and was more effective than the lipid peroxidation chain blocker, ${\alpha}$-tocopherol (Vit. E). Glycoside of genistein, genistin, the water-soluble antioxidant, L-ascorbate, and the iron chelator, myo-inositol hexaphosphoric acid dodecasodium salt (sodium phytate) did not exhibit protective effect against photohemolysis. L-Ascorbate and sodium phytate stimulated photohemolysis at high concentration $(500\;{\mu}m)$. ${\alpha}$-Carotene 3,3'-diol (lutein), a singlet oxygen $(^1O_2)$ quencher, exhibited pronounced protective effect, an indication that $^1O_2$ is important in photohemolysis sensitized by rose-bengal. Reactive oxygen scavenging activities $(OSC_{50})$ of natural antioxidants including genistein on reactive oxygen species (ROS) generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay were in the order of sodium phytate > L-ascorbate > ${\alpha}$-tocopherol > genistein > genistin. $OSC_{50}$ value of genistein, genistin, ${\alpha}$-tocopherol, L-ascorbate, and sodium phytate were 41.0, 109.0, 9.0, 5.2, and $0.56{\mu}m$ respectively. The order of free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity $(FSC_{50})$ was L-ascorbate > ${\alpha}$-tocopherol > genistein > genistin. These results indicate that genistein can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.

Effect of Genistein and Daidzein on Antioxidant Defense System in C57BL/KsJ-db/db Mice (Genistein과 Daidzein 급여가 제2형 당뇨동물모델의 적혈구와 조직 중의 항산화방어계에 미치는 영향)

  • Park, Sun-Ae;Kim, Myung-Joo;Jang, Joo-Yeun;Choi, Myung-Sook;Yeo, Ji-Young;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1159-1165
    • /
    • 2006
  • Our preliminary study showed that genistein and daidzein improved blood glucose level in type 2 diabetic mice by enhancing the glucose and lipid metabolism. The objective of this study was to evaluate whether genistein and daidzein are associated with alterations in antioxidant defense mechanism of type 2 diabetic mice. Male C57BL/KsJ-db/db (db/db) mice and age-matched non-diabetic littermates (db/+) were used in this study. The db/db mice were divided into control, genistein (0.02%, w/w) and daidzein (0.02%, w/w) groups. The relative weights of liver, epididymal adipose tissue and perirenal adipose tissue were significantly higher in the db/db group than in the db/+ group, whereas heart weight was lower. The genistein and daidzein supplement did not affect the organ weights in db/db mice. The blood glucose level was positively correlated with superoxide dismutase (SOD, r=0.380, p<0.05) and catalase (CAT, r=0.345, p<0.05) activities and negatively correlated with glutathione peroxidase (GSH Px, r= 0.404, p<0.05) activity in erythrocyte. Therefore, the erythrocyte SOD and CAT activities were significantly elevated in the db/db group compared to the db/+ group and the GSH-Px activity was lowered. However, the supplementation of genistein and daidzein reversed erythrocyte CAT and GSH-Px activities in type 2 diabetic mice. In this current study, the SOD activities in liver, kidney and heart were significantly not different between the groups. The CAT and GSH-Px activities in liver and GSH-Px activity in kidney were significantly higher in the db/db group than in the db/+ group, while the CAT activity in kidney, CAT and GSH-Px activities in heart were lowered. The supplementation of genistein and daidzein significantly attenuated the changes of CAT and/or GSH-Px activities in liver and heart. The supplementation of genistein and daidzein elevated GSH levels in kidney and heart compared to the db/db control group. The lipid peroxide levels in liver, kidney and heart were significantly lowered in the genistein and daidzein supplemented groups compared to the db/db control group. These results suggest that genistein and daidzein might be beneficial for the prevention of type 2 diabetic complication via suppressing changes of antioxidant enzymes activities with simultaneous reduction of lipid peroxidation.