• Title/Summary/Keyword: 대뇌피질 주름지수

Search Result 1, Processing Time 0.015 seconds

Alterations of Cortical Folding Patterns in Patients with Bipolar I Disorder : Analysis of Local Gyrification Index (제1형 양극성장애 환자에서 대뇌피질 주름 패턴의 변형 : Local Gyrification Index 분석)

  • Lee, Junyong;Han, Kyu-Man;Won, Eunsoo;Lee, Min-Soo;Ham, Byung-Joo
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.4
    • /
    • pp.225-234
    • /
    • 2017
  • Objectives Local gyrification reflects the early neural development of cortical connectivity, and is regarded as a potential neural endophenotype in psychiatric disorders. Several studies have suggested altered local gyrification in patients with bipolar I disorder (BD-I). The purpose of the present study was to investigate the alterations in the cortical gyrification of whole brain cortices in patients with BD-I. Methods Twenty-two patients with BD-I and age and sex-matched 22 healthy controls (HC) were included in this study. All participants underwent T1-weighted structural magnetic resonance imaging (MRI). The local gyrification index (LGI) of 66 cortical regions were analyzed using the FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging). One-way analysis of covariance (ANCOVA) was used to analyze the difference of LGI values between two groups adjusting for age and sex as covariates. Results The patients with BD-I showed significant hypogyria in the left pars opercularis (uncorrected-p = 0.049), the left rostral anterior cingulate gyrus (uncorrected-p = 0.012), the left caudal anterior cingulate gyrus (uncorrected-p = 0.033). However, these findings were not significant after applying the multiple comparison correction. Severity or duration of illness were not significantly correlated with LGI in the patients with BD-I. Conclusions Our results of lower LGI in the anterior cingulate cortex and the ventrolateral prefrontal cortex in the BD-I group implicate that altered cortical gyrification in neural circuits involved in emotion-processing may contribute to pathophysiology of BD-I.