• Title/Summary/Keyword: 대기 중 오존 농도

Search Result 103, Processing Time 0.016 seconds

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

Evaluation of the Effect of Urban-agriculture on Urban Heat Island Mitigation (도시농업의 도시열섬현상 저감효과에 대한 계량화 평가연구)

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Park, So-Hyun;Yoo, Sung-Yung;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.848-852
    • /
    • 2012
  • Vegetation can make not only to lower the urban ambient air temperature (UAAT) by crop evapotranspiration (ET) and increasing solar radiation albedo, but also to reduce the urban air pollution by $CO_2$ uptake and $O_2$ emission in addition to the reducing ozone concentrations by aid of lower the UAAT. To evaluate the effect of vegetation on urban heat island mitigation (UHIM), the climate change of 6 cities during 30 years are analysed, and the amount of ET, $CO_2$ uptake, $O_2$ emission and ozone concentrations are estimated in Korea. The most hot season is the last part of July and the first part of August, and the highest average UAAT of a period of ten days was $35.03^{\circ}C$ during 30 years (1979 - 2008). The mean values of maximum ET of rice and soybean in urban area during urban heat island phenomena were 6.86 and $6.00mm\;day^{-1}$, respectively. The effect of rice and soybean cultivation on lowering the UAAT was assessed to be 10.5 and $3.0^{\circ}C$ in Suwon, respectively, whereas the differences between the UAAT and canopy temperature at urban paddy and upland in Ansung were 2.6 and $2.2^{\circ}C$. On the other hand, the urban-garden in Suwon city had resulted in lowering the UAAT and the surface temperature of buildings to 2.0 and $14.5^{\circ}C$, respectively. Furthermore, the amounts of $CO_2$ uptake by rice and soybean were estimated to be 20.27 and $15.54kg\;CO_2\;10a^{-1}day^{-1}$, respectively. The amounts of $O_2$ emission by rice and soybean were also assessed to be 14.74 and $11.30kg\;O_2\;10a^{-1}day^{-1}$, respectively. As other cleaning effect of air pollution, the ozone concentrations could be also estimated to reduce 21.0, 8.8, and 4.0 ppb through rice-, soybean cultivation, and urban gardening during most highest temperature period in summer, respectively.

Preparation and characterization of the primary gas standards for isoprene (아이소프렌 일차표준가스의 제조 및 특성 평가)

  • Kim, Taesu;Kang, Chul-Ho;Kim, Yong Doo;Lee, Seungho;Kim, Dalho
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.357-363
    • /
    • 2014
  • Isoprene is a one of the biogenic volatile organic compounds (BVOCs) and it is known as a source of the tropospheric ozone and formaldehyde. In addition, isoprene is a trace component of the exhaled breath and it is a potential biomarker for the diagnosis of diseases such as lung cancer. In these regards, isoprene gas standards are required for the accurate measurement of isoprene in air samples. To establish a standard for isoprene gas, gravimetric preparation and characterization of primary gas standards were studied. The primary gas standards were produced independently in 4 aluminum cylinders and concentrations were examined by GC-FID. As a result, the uncertainty of the gravimetric preparations including purity of the raw material was 0.01% and reproducibility of the preparation of independent 4 cylinders was 0.08%. The primary gas standards for isoprene showed 14 months of long-term stability. The relative expended uncertainty of 2.8% (95% of confidence level, k=1.96) was assigned to the certified value of 10 ${\mu}mol$/mol level of isoprene based on the quantitative evaluation of the purity, weighing, reproducibility, adsorption and long-term stability.