• 제목/요약/키워드: 대기질 예보 모델

검색결과 8건 처리시간 0.028초

황사배출량을 적용한 동아시아 미세먼지 예보 개선 연구 (A Study on Particulate Matter Forecasting Improvement by using Asian Dust Emissions in East Asia)

  • 최대련;윤희영;장임석;이재범;이용희;명지수;김태희;구윤서
    • 한국도시환경학회지
    • /
    • 제18권4호
    • /
    • pp.531-546
    • /
    • 2018
  • 동아시아지역을 대상으로 황사배출량 산정 모듈 및 이를 적용한 예보시스템을 개발하였고, 개발된 모형의 화학수송모델링 정합도 및 실시간 예보 운영 평가를 진행하였다. 2015년 화학수송모델링 정합도 평가 결과, 중국 지역에서는 황사 배출량을 적용한 예보 모형이 과대평가하는 기간이 있으나 대부분 지역에서 저평가 되었던 $PM_{10}$ 을 보완하고, 통계수치가 개선되는 것을 확인할 수 있었다. 한국 지역에서는 황사 발생일인 2월 22일~24일, 3월 16일~17일(서울지역대상)에는 황사의 유입을 적절히 모사하였으나 황사가 관측되지 않은 4월에는 황사를 적용한 예보모델이 과대평가하는 것을 확인할 수 있었다. 그러나 황사를 적용한 예보모형은 한반도 대부분 지역에서 저평가 되었던 $PM_{10}$ 을 보완하고, 통계수치가 개선되는 것을 확인할 수 있었다. 2017년 예보 성능 평가 결과, 황사배출량을 적용한 예보모델은 기존 모델과 비교하였을 때, POD는 대부분 개선되지만, A는 유사 또는 감소, FAR는 대부분 증가하는 경향이 나타났다. 황사배출량을 적용한 예보모형은 동아시아 지역에 저평가 하고 있는 $PM_{10}$ 을 보완하는 장점이 있지만, 황사배출량 산정의 불확실성 등이 내제되어 모델이 측정값을 과대모의하여 오경보율이 높다. 따라서 한반도 지역에 대표 대기질 예보모형으로 사용하기는 부적절하다고 판단된다. 그러나 황사 기간에는 황사배출량 모델의 모사성능은 우수하였으므로, 황사가 발생하는 기간에는 기존 모델과 융합하여 예보관이 예보하는 것이 필요하다고 사료된다.

확률장기예보GloSea5의 물관리 활용을 위한 검증 (Verification for applied water management technology of Global Seasonal forecasting system version 5)

  • 문수진;황진;서애숙;음형일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.236-236
    • /
    • 2016
  • 현재 댐운영 계획 수립 시 매월 유지해야 하는 저수량의 범위를 나타낸 기준수위가 사용되고 있으며 매년 홍수기 말에 현재의 수문 상황과 장래의 전망을 통한 시기별 연간, 월간 댐운영 계획을 수립하고 있다. 물관리의 이수측면에서 댐수위 운영계획 수립과 홍수기 운영목표 수위를 결정하는데 활용하기 위해서는 계절단위, 연단위의 기상정보가 필요하다. 본 연구에서는 기상청에서 운영하고 제공하는 전지구 계절예측시스템 GloSea5(Global Seasonal forecasting system version 5)자료를 활용하여 금강유역에 적용하고자 하였다. GloSea5는 전지구계절예측시스템으로 대기(UM), 지면(JULES), 해양(NEMO), 해빙(CICE)모델이 서로 결합되어 하나의 시스템으로 구성되어 있으며 공간 수평해상도는 N216($0.83^{\circ}{\times}0.56^{\circ}$)으로 중위도에서 약60km이다. Hindcast자료는 유럽중기예보센터(ECMWF)에서 생산된 ERA-Interim 재분석장을 대기 모델의 초기장으로 사용하며 기간은 1996~2009년의 총 14년이다. 예보자료의 검증은 예보의 질을 결정하는 과정으로 Brier Skill Score (BSS), Reliability Diagrams, Relative Operating, Characteristics (ROC)등을 통해 정확성과 오차에 의한 예보의 성능을 검증하였다. 또한 Glosea5의 통계적 상세화를 수행하여 다양한 변수가 갖는 계통적인 지역 오차를 보정함으로써 자료의 신뢰도를 향상시키고자 하였으며 이는 이후 수문모델과의 연계 시 보다 정확하고 효율적인 댐운영에 활용할 수 있는 기후예측정보를 제공할 수 있을 것으로 판단된다.

  • PDF

CUDA를 이용한 실시간 대기질 예보 자료동화 (Data Assimilation of Real-time Air Quality Forecast using CUDA)

  • 배효식;유숙현;권희용
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.271-277
    • /
    • 2017
  • 현대에 들어서면서 대기오염 물질이 심각하게 국민의 건강을 위협하는 단계에 이르렀기 때문에 이에 대한 예보의 중요성은 점점 높아지고 있다. 대기질을 예보하는데 있어서 예보 모델에 입력되는 초기장은 예보의 정확성에 영향을 미치는 요소이기 때문에 신뢰도 높은 초기장을 생성하는 것이 매우 중요하며, 이때 필요한 기법 중 하나가 자료동화이다. 자료동화는 대상 지역이 넓어지고, 관측소의 수가 증가될수록 더 많은 연산이 필요하기 때문에 그 수행시간이 길어진다. 때문에 예보 규모가 커질수록 기존의 순차처리 방식으로는 빠른 처리속도를 요구하는 현업에 적용하기 어렵다. 이에 본 논문에서는 자료동화 기법 중의 하나인 크레스만 방법을 CUDA를 이용하여 실시간으로 처리할 수 있는 방법을 제안하였다. 그 결과, 제안한 CUDA를 이용한 병렬처리 방법이 최소 35배 이상 속도가 향상되었다.

동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로 (Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015)

  • 남기표;이대균;장임석
    • 환경영향평가
    • /
    • 제28권3호
    • /
    • pp.183-200
    • /
    • 2019
  • 본 연구에서는 지상 $PM_{2.5}$ 측정 자료와 일기도 자료, WRF 및 CMAQ 모델을 활용하여 동북아시아 지역의 계절별 $PM_{2.5}$ 거동특성을 분석하였으며, 대기질 모델에 BFM을 적용하여 우리나라 $PM_{2.5}$ 농도에 대한 계절별 국내외 기여도를 평가하였다. 일기도 자료를 기반으로 국내 $PM_{2.5}$ 측정 자료 및 대기질 모사결과를 통해 $PM_{2.5}$의 거동특성을 분석한 결과, 동북아 지역에서의 $PM_{2.5}$는 장거리 수송된 대기오염 물질의 유입 및 대기정체 현상에 기인한 농도의 증가 또는 깨끗한 공기의 유입에 따른 농도의 감소 등의 특징이 계절별 종관기상 특성에 따라 상이하게 나타났다. 대기질 모델에 BFM (Brute-Force Method)을 적용하여 우리나라 6개 집중측정소 지점의 $PM_{2.5}$ 농도에 대한 국내외 기여도 평가를 수행한 결과, 백령도 지역은 낮은 자체 배출량과 동시에 중국으로부터 인접한 지리적 특성으로 인해 국외로부터의 기여가 지배적인 영향을 미치는 것으로 나타났다. 반면, 서울, 울산과 같이 높은 자체 배출량 특성을 나타내는 지역의 경우, $PM_{2.5}$에 대한 국외 기여도는 타 지역에 비해 상대적으로 낮게 나타남과 동시에 계절에 따른 기여도의 표준편차는 상대적으로 높게 나타나는 특징을 보였다. 본 연구는 우리나라를 중심으로 계절별 기상조건 변화에 따른 동북아 지역의 $PM_{2.5}$ 거동특성을 분석하여 국내 대기오염물질 현상에 대한 이해를 증진함과 동시에, 지역 배출특성에 따라 $PM_{2.5}$ 농도에 대한 국내외 기여도는 상이할 수 있음을 알려 향후 대기질 개선 대책 수립시 기초자료로 활용될 수 있을 것으로 기대된다.

전지구 대기질 재분석 자료의 평가와 국지규모 미세먼지 예보모델에 미치는 영향 (Assessment of Global Air Quality Reanalysis and Its Impact as Chemical Boundary Conditions for a Local PM Modeling System)

  • 이강열;이순환;김은지
    • 한국환경과학회지
    • /
    • 제25권7호
    • /
    • pp.1029-1042
    • /
    • 2016
  • The initial and boundary conditions are important factors in regional chemical transport modeling systems. The method of generating the chemical boundary conditions for regional air quality models tends to be different from the dynamically varying boundary conditions in global chemical transport models. In this study, the impact of real time Copernicus atmosphere monitoring service (CAMS) re-analysis data from the modeling atmospheric composition and climate project interim implementation (MACC) on the regional air quality in the Korean Peninsula was carried out using the community multi-scale air quality modeling system (CMAQ). A comparison between conventional global data and CAMS for numerical assessments was also conducted. Although the horizontal resolution of the CAMS re-analysis data is not higher than the conventionally provided data, the simulated particulate matter (PM) concentrations with boundary conditions for CAMS re-analysis is more reasonable than any other data, and the estimation accuracy over the entire Korean peninsula, including the Seoul and Daegu metropolitan areas, was improved. Although an inland area such as the Daegu metropolitan area often has large uncertainty in PM prediction, the level of improvement in the prediction for the Daegu metropolitan area is higher than in the coastal area of the western part of the Korean peninsula.

서울지역 PM10 농도 예측모형 개발 (Development of statistical forecast model for PM10 concentration over Seoul)

  • 손건태;김다홍
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.289-299
    • /
    • 2015
  • 본 연구는 PM10 농도에 대한 계량치 예측모형 개발을 목적으로 한다. 세 종류의 자료 (기상관측 자료, 세계기상통신망 중국 관측자료, 대기질 화학수치모델자료)를 예측인자로 사용하였으며, 일일 단기예보 시스템에 쉽게 적용할 수 있도록 시간자료를 일자료로 변환하였고 시차변환을 수행하였다. 상관분석과 다중공선성 진단을 통하여 예측인자를 선택하고 두 종류의 모형 (중회귀모형, 문턱치 회귀모형)을 각각 적합하였다. 모형 안정성 검사를 위하여 모형검증을 수행하였으며, 전체자료를 사용하여 모형을 재추정한 후 예측치와 관측치 사이의 산점도와 시계열그림, RMSE, 예측성 평가측도를 작성 및 산출하여 두 모형을 비교하였다. 문턱치 회귀모형의 예측력이 고농도 PM10예측에서 다소 우수한 결과를 보였다.

미세먼지 수치 예측 모델 구현을 위한 데이터마이닝 알고리즘 개발 (Development of Data Mining Algorithm for Implementation of Fine Dust Numerical Prediction Model)

  • 차진욱;김장영
    • 한국정보통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.595-601
    • /
    • 2018
  • 최근 미세먼지 수치가 급격히 상승함에 따라 이에 대한 관심도가 굉장히 높아지고 있다. 미세먼지의 노출은 호흡기 및 심혈관계 질환의 발생과 관련이 있으며, 사망률도 증가시키는 것으로 보고되고 있다. 뿐만 아니라, 산업현장에서도 미세먼지에 대한 피해가 속출한다. 그러나 현대인의 삶에서 미세먼지 노출은 불가피하다. 그러므로 미세먼지를 예측하여, 이에 대한 노출을 최소화하는 것이 건강 및 산업 피해축소에 가장 효율적인 방법일 것이다. 기존의 미세먼지 예측 모델은 농도 수치가 아닌 미세먼지의 농도 범위에 따라 좋음, 보통, 나쁨, 매우 나쁨으로만 나누어 예보하고 있다. 본 논문은 기존의 실제 기상 및 대기 질 데이터를 이용, 기계학습 알고리즘인 Artificial Neural Network (ANN)알고리즘과 K-Nearest Neighbor (K-NN)알고리즘을 상호 응용하여 미세먼지 수치 (PM 10)를 예측하고자 하였다.